• This record comes from PubMed

Molecular characterization, carbohydrate metabolism and tolerance to abiotic stress of Eremothecium coryli endophytic isolates from fruits of Momordica indica

. 2025 Jun ; 70 (3) : 601-617. [epub] 20241023

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
SEI 00193.00000229/2021-21 Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF)
DPG nº 0005/2024 University of Brasília DPG

Links

PubMed 39453539
DOI 10.1007/s12223-024-01211-x
PII: 10.1007/s12223-024-01211-x
Knihovny.cz E-resources

Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.

See more in PubMed

Agboola JO, Rocha SDC, Mensah DD, Hansen JØ, Øyås O, Lapeña D, Mydland LT, Arntzen MØ, Horn SJ, Øverland M (2023) Effect of yeast species and processing on intestinal microbiota of Atlantic salmon (Salmo salar) fed soybean meal-based diets in seawater. Anim Microbiome 5:21. https://doi.org/10.1186/s42523-023-00242-y PubMed DOI PMC

Baig F, Farnier K, Piper AM, Speight R, Cunningham JP (2020) Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. J Chem Ecol 46(8):675–687. https://doi.org/10.1007/s10886-020-01167-5 PubMed DOI

Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763(7):737–746. https://doi.org/10.1016/j.bbamcr.2006.05.001 PubMed DOI

Banaś AK, Zgłobicki P, Kowalska E, Bażant A, Dziga D, Strzałka W (2020) All You Need Is Light. Photorepair of UV-Induced Pyrimidine Dimers. Genes (Basel) 11:1304. https://doi.org/10.3390/genes11111304 PubMed DOI

Beney L, Martínez de Marañón I, Marechal PA, Gervais P (2000) Influence of thermal and osmotic stresses on the viability of the yeast Saccharomyces cerevisiae. Int J Food Microbiol 55:275–279. https://doi.org/10.1016/s0168-1605(00)00203-8 PubMed DOI

Bernhard GH, Neale RE, Barnes PW, Neale PJ, Zepp RG, Wilson SR, Andrady AL, Bais AF, McKenzie RL, Aucamp PJ, Young PJ et al (2020) Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem Photobiol Sci 19:542–584. https://doi.org/10.1039/d0pp90011g PubMed DOI PMC

Borden S, Higgins VJ (2002) Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum. Physiol Mol Plant Pathol 4:227–236. https://doi.org/10.1006/pmpp.2002.0435 DOI

Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 1:1–8. https://doi.org/10.1016/j.soilbio.2010.10.001 DOI

Braga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Robertes DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 61:405–425. https://doi.org/10.1007/s00294-015-0483-0 PubMed DOI

Breierová E, Certík M, Kovárová A, Gregor T (2008) Biosorption of nickel by yeasts in an osmotically unsuitable environment. Z Naturforsch C J Biosci 63(11–12):873–878. https://doi.org/10.1515/znc-2008-11-1215 PubMed DOI

Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763 PubMed DOI

Brito ACC, Boechat CL, de Sena AFS, de Sousa Luz Duarte L, do Nascimento CWA, et al (2020) Assessing the distribution and concentration of heavy metals in soils of an agricultural frontier in the Brazilian Cerrado. Water, Air, & Soil Pollution 231:1–15. https://doi.org/10.1007/s11270-020-04760-2

Brown EG, Goodwin TW, Pendlington S (1955) Studies on the biosynthesis of riboflavin. 2. Further observations on nitrogen metabolism and flavinogenesis in Eremothecium ashbyii. Biochem J 6:37–46. https://doi.org/10.1042/bj0610037 DOI

Cardoso MRD, Marcuzzo FFN, Barros JR (2014) Climatic classification of Köppen-Geiger for the state of Goiás and the Federal District. ACTA Geog 8:40–55 DOI

Carvalho FP, Souza AC, Magalhães-Guedes KT, Dias DD, Silva CF, Schwan RF (2013) Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr. J. Microbiol. Res. 7:4176–4190 DOI

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 PubMed DOI

Cauchie M, Desmet S, Lagrou K (2017) Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol 168:802–810. https://doi.org/10.1016/j.resmic.2017.02.005 PubMed DOI

Chaiwarit T, Masavang S, Mahe J, Sommano S, Ruksiriwanich W, Brachais C-H, Chambin O, Jantrawut P (2020) Nam dokmai peel as a source of pectin and its potential use as a film-forming polymer. Food Hydrocolloid 102:105611. https://doi.org/10.1016/j.foodhyd.2019.105611 DOI

Chen S, Xiao L, Li S, Meng T, Wang L, Zhang W (2022) The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels. Ultrason Sonochem 86:106045. https://doi.org/10.1016/j.ultsonch.2022.106045 PubMed DOI PMC

Cripwell RA, Rose SH, Viljoen-Bloom M, van Zyl WH (2019) Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strategies. FEMS Yeast Research. 19. https://doi.org/10.1093/femsyr/foy127

Da Silva MK, Da Silva AV, Fernandez PM, Montone RC, Alves RP, De Queiroz AC, De Oliveira VM, Dos Santos VP, Putzke J, Rosa LH, Duarte AWF (2022) Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. An Acad Bras Cienc 94:e20210540. https://doi.org/10.1590/0001-3765202220210540 PubMed DOI

Devadas SM, Ballal M, Prakash PY, Hande MH, Bhat GV, Mohandas V (2017) Auxanographic Carbohydrate Assimilation Method for Large Scale Yeast Identification. J Clin Diagn Res 11:1–3. https://doi.org/10.7860/JCDR/2017/25967.9653 DOI

Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24:1135–1153. https://doi.org/10.1111/j.1420-9101.2011.02249.x PubMed DOI

do Vale HMM, dos Reis JBA, de Oliveira M, Moreira GAM, Bomfim CA (2021) Yeasts in native fruits from Brazilian neotropical savannah: occurrence, diversity and enzymatic potential. Biota Neotrop 21(4):e20201184. https://doi.org/10.1590/1676-0611-BN-2020-1184 DOI

Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17(6):1023–1035. https://doi.org/10.1007/s00792-013-0584-y PubMed DOI

DuPree MR, Wilcox G (1977) Bromothymol blue and carbohydrate-sensitive plating media. J Clin Microbiol 6(4):343–347. https://doi.org/10.1128/jcm.6.4.343-347.1977 PubMed DOI PMC

Eiten G (1978) Delimitation of the cerrado concept. Vegetatio 36:169–178 DOI

Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019) Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 35:154. https://doi.org/10.1007/s11274-019-2728-4 PubMed DOI PMC

Gastmann S, Dünkler A, Walther A, Klein K, Wendland J (2007) A molecular toolbox for manipulating Eremothecium coryli. Microbiol Res 4:299–307 DOI

Gilmore SA, Naseem S, Konopka JB, Sil A (2013) N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. Plos Genet 9(9):e1003799. https://doi.org/10.1371/journal.pgen.1003799 PubMed DOI PMC

Goddard MR, Greig D (2015) Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Res 15(3):fov009. https://doi.org/10.1093/femsyr/fov009 PubMed DOI PMC

Gupta A, Avci P, Dai T, Huang YY, Hamblin MR (2013) Ultraviolet Radiation in Wound Care: Sterilization and Stimulation. Adv Wound Care (New Rochelle) 2:422–437. https://doi.org/10.1089/wound.2012.0366 PubMed DOI

Hankin L, Anagnostakis SL (1975) The use of solid media for the detection of enzyme production by fungi. Mycologia 67:567–607. https://doi.org/10.1080/00275514.1975.12019782 DOI

Hecht KA, O’Donnell AF, Brodsky JL (2014) The proteolytic landscape of the yeast vacuole. Cell Logist 4:e28023. https://doi.org/10.4161/cl.28023 PubMed DOI PMC

Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V (2022) Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. Toxics 10:499. https://doi.org/10.3390/toxics10090499 PubMed DOI PMC

Hoog GS, van den GerritsEnde AH (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41(5–6):183–9 PubMed DOI

Houghton-Larsen J, Brandt A (2006) Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex. Appl Environ Microbiol 72(11):7176–7182. https://doi.org/10.1128/AEM.01704-06 PubMed DOI PMC

Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J (2016) Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnol J 14:2045–4065. https://doi.org/10.1111/pbi.12563 PubMed DOI PMC

Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Ind Microbiol 14:164–168. https://doi.org/10.1007/BF01569899 PubMed DOI

Junker K, Bravo Ruiz G, Lorenz A, Walker L, Gow NAR, Wendland J (2018) The mycoparasitic yeast Saccharomycopsis schoenii predates and kills multi-drug resistant Candida auris. Sci Rep 8:14959. https://doi.org/10.1038/s41598-018-33199-z PubMed DOI PMC

Junker K, Chailyan A, Hesselbart A, Forster J, Wendland J (2019) Multi-omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. Plos Pathog 15:e1007692. https://doi.org/10.1371/journal.ppat.1007692 PubMed DOI PMC

Kachalkin A, Glushakova A, Streletskii R (2022) Diversity of Endophytic Yeasts from Agricultural Fruits Positive for Phytohormone IAA Production. BioTech (Basel) 11:38. https://doi.org/10.3390/biotech11030038 PubMed DOI

Karam PA (2003) Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on earth. Health Phys 84(3):322–333. https://doi.org/10.1097/00004032-200303000-00005 PubMed DOI

Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy. J Cell Biol 27:137–138

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108 PubMed DOI

Kijpornyongpan T, Aime MC (2020) Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel) 6:368. https://doi.org/10.3390/jof6040368 PubMed DOI

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 PubMed DOI PMC

Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41:22–28. https://doi.org/10.1093/nar/gkt389 DOI

Kurtzman CP, (2011) Hyphopichia von Arx & van der Walt, (1976). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 435–438

Kutty SN, Philip R (2008) Marine yeasts - a review. Yeast 25(7):465–483. https://doi.org/10.1002/yea.1599 PubMed DOI

Leeuw NJ, Swart CW, Ncango DM, Pohl CH, Sebolai OM, Strauss CJ, Botes PJ, van Wyk PJW, Nigam S, Kock JLF (2007) Acetylsalicylic acid as antifungal in Eremothecium and other yeasts. Antonie Van Leeuwenhoek 91:393–405. https://doi.org/10.1007/s10482-006-9124-4 PubMed DOI

Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694 PubMed DOI

Li S, Chen K, Grierson D (2021) Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 10:1136. https://doi.org/10.3390/cells10051136 PubMed DOI PMC

Ljunggren J, Borrero-Echeverry F, Chakraborty A, Lindblom TUT, Hedenström E, Karlsson M, Witzgall P, Bengtsson M (2019) Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 85:e01761-e1819. https://doi.org/10.1128/AEM.01761-19 PubMed DOI PMC

Loew O (1900) A new enzyme of general occurrence in organismis. Science 11:701–702. https://doi.org/10.1126/science.11.279.701 PubMed DOI

Martins D, English AM (2014) Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast. Redox Biol 2:308–313. https://doi.org/10.1016/j.redox.2013.12.019 PubMed DOI PMC

Maslanka R, Zadrag-Tecza R (2022) Different life strategies in genetic backgrounds of the Saccharomyces cerevisiae yeast cells. Fungal Biol 126:498–510. https://doi.org/10.1016/j.funbio.2022.04.004 PubMed DOI

Morais PB, Hagler AN, Rosa CA, Mendonca-Hagler LC, Klaczko LB (1992) Yeasts associated with Drosophila in tropical forests of Rio de Janeiro. Brazil Can J Microbiol 38:1150–1155. https://doi.org/10.1139/m92-188.PMID PubMed DOI

Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler NA (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61(12):4251–4257. https://doi.org/10.1128/aem.61.12.4251-4257.1995 PubMed DOI PMC

Munna MS, Humayun S, Noor R (2015) Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Res Notes 8:369. https://doi.org/10.1186/s13104-015-1355-x PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300 PubMed DOI

Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13(1):1–55. https://doi.org/10.3109/07388559309069197 PubMed DOI

Ohdate T, Omura F, Hatanaka H, Zhou Y, Takagi M, Goshima T, Akao T, Ono E (2018) MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast. Plos One 13(6):e0198744. https://doi.org/10.1371/journal.pone.0198744 PubMed DOI PMC

Orlowski M (1991) Mucor dimorphism. Microbiol Rev 55(2):234–258. https://doi.org/10.1128/mr.55.2.234-258.1991 PubMed DOI PMC

Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511. https://doi.org/10.1016/j.femsyr.2005.01.002 PubMed DOI

Pasin TM, Moreira EA, Benassi VM, Spencer PVD, Peres NTA, Cereia M, Polizeli MdLTM (2022) Effects of Ultraviolet Exposure on the Tropical Fungi Aspergillus carbonarius and Aspergillus japonicus: Survival, Amylase Production, and Thermostability. Trop Conserv Sci. 15. https://doi.org/10.1177/19400829221092638

Perera IC, Mauran S, Wickramasinghe PM (2023) Bioremediation of heavy metals using yeast. In: Daverey A, Dutta K, Joshi S, Gea T (eds) Advances in Yeast Biotechnology for Biofuels and Sustainability. Elsevier, Amsterdam, pp 475–501. https://doi.org/10.1016/B978-0-323-95449-5.00004-7

Pereyra MM, Díaz MA, Meinhardt F, Dib JR (2020) Effect of stress factors associated with postharvest citrus conditions on the viability and biocontrol activity of Clavispora lusitaniae strain 146. Plos One 15(9):e0239432. https://doi.org/10.1371/journal.pone.0239432 PubMed DOI PMC

Rana N, Walia A, Gaur A (2013) α-Amylases from microbial sources and its potential applications in various industries. Natl Acad Sci Lett 36:9–17 DOI

Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. Biomed Res Int 2019:6105865. https://doi.org/10.1155/2019/6105865 PubMed DOI PMC

Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest. Southeastern Brazil Plant Ecol 160(1):1–16. https://doi.org/10.1023/A:1015819219386 DOI

Santos ARO, Aires A, Pontes A, Silva M, Brito PH, Groenewald M, Melo CGS, Lachance MA, Sampaio JP, Rosa CA (2021) Phaffia brasiliana sp. nov., a yeast species isolated from soil in a Cerrado-Atlantic Rain Forest ecotone site in Brazil. Int J Syst Evol Microbiol 71(11). https://doi.org/10.1099/ijsem.0.005080

Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51(3):492–508. https://doi.org/10.1080/10635150290069913 PubMed DOI

Spor A, Nidelet T, Simon J, Bourgais A, de Vienne D, Sicard D (2009) Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae. BMC Evol Biol 9:296. https://doi.org/10.1186/1471-2148-9-296 PubMed DOI PMC

Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748. https://doi.org/10.1038/nrmicro2636 PubMed DOI

Sun GL, Reynolds EE, Belcher AM (2020) Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat Sustain 3:303–311 DOI

Sun L, Wang J, Lian L, Song J, Du X, Liu W, Zhao W, Yang L, Li C, Qin Y, Yang R (2022) Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits. BMC Plant Biol 22:303. https://doi.org/10.1186/s12870-022-03685-8 PubMed DOI PMC

Takeyama MM, de Carvalho MC, Carvalho HS, Silva CR, Uetanabaro APT, da Costa AM, Evaristo JAM, Nogueira FCS, Fai AEC, Koblitz MGB (2022) Pectinases Secretion by Saccharomyces cerevisiae: Optimization in Solid-State Fermentation and Identification by a Shotgun Proteomics Approach. Molecules 27:4981. https://doi.org/10.3390/molecules27154981 PubMed DOI PMC

Torrellas M, Pietrafesa R, Ferrer-Pinós A, Capece A, Matallana E, Aranda A (2023) Optimizing growth and biomass production of non-Saccharomyces wine yeast starters by overcoming sucrose consumption deficiency. Front Microbiol 6(14):1209940. https://doi.org/10.3389/fmicb.2023.1209940 DOI

Vianna CR, Silva CL, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217. https://doi.org/10.1007/s10482-007-9194-y PubMed DOI

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246 PubMed DOI PMC

Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M, Sweetman C, Famiani F (2021) Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. Int J Mol Sci 22:7794. https://doi.org/10.3390/ijms22157794 PubMed DOI PMC

Watanabe D, Hashimoto W (2023) Adaptation of yeast Saccharomyces cerevisiae to grape-skin environment. Sci Rep 3:9279. https://doi.org/10.1038/s41598-023-35734-z DOI

Wendland J, Walther A (2011) Genome evolution in the Eremothecium clade of the Saccharomyces complex revealed by comparative genomics. G3 (Bethesda) 1(7):539–48. https://doi.org/10.1534/g3.111.001032 PubMed DOI

Winge Ö, Roberts C (1950) Identification of the Gene for Maltose Fermentation in Saccharomyces Italicus. Nat 166:1114. https://doi.org/10.1038/1661114a0 DOI

Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 77–100 DOI

Yu J, Wu Y, He Z, Li M, Zhu K, Gao B (2018) Diversity and Antifungal Activity of Endophytic Fungi Associated with Camellia oleifera. Mycobiology 46:85–91. https://doi.org/10.1080/12298093.2018.1454008 PubMed DOI PMC

Yurkov AM (2018) Yeasts of the soil - obscure but precious. Yeast 35:369–378. https://doi.org/10.1002/yea.3310 PubMed DOI

Zhao XQ, Bai F (2012) Zinc and yeast stress tolerance: Micronutrient plays a big role. J Biotech 4:176–183. https://doi.org/10.1016/j.jbiotec.2011.06.038 . (ISSN 0168-1656) DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...