Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HRZZ-IP-2016-06-9003 and HRZZ-IP-2022-10-8445
Croatian Science Foundation
UNIRI-BIOMED-18-128 and uniri-mladi-biomed-20-23
University of Rijeka
DZRO-FVZ-ZHN-II
Ministry of Defence of the Czech Republic - Long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence
PubMed
39458259
PubMed Central
PMC11509842
DOI
10.3390/microorganisms12101949
PII: microorganisms12101949
Knihovny.cz E-zdroje
- Klíčová slova
- Dictyostelium, Francisella, amoeba, intracellular life, proteome, vacuole,
- Publikační typ
- časopisecké články MeSH
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host-pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
Department of Biology Biotechnical Faculty University of Ljubljana 1000 Ljubljana Slovenia
Helmholtz Centre for Infection Research 38124 Braunschweig Germany
Zobrazit více v PubMed
Kingry L.C., Petersen J.M. Comparative review of Francisella tularensis and Francisella novicida. Front. Cell. Infect. Microbiol. 2014;4:35. doi: 10.3389/fcimb.2014.00035. PubMed DOI PMC
Sjodin A., Svensson K., Ohrman C., Ahlinder J., Lindgren P., Duodu S., Johansson A., Colquhoun D.J., Larsson P., Forsman M. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genom. 2012;13:268. doi: 10.1186/1471-2164-13-268. PubMed DOI PMC
Maurin M. Francisella tularensis as a potential agent of bioterrorism? Expert Rev. Anti-Infect. Ther. 2015;13:141–144. doi: 10.1586/14787210.2015.986463. PubMed DOI
Brett M., Doppalapudi A., Respicio-Kingry L.B., Myers D., Husband B., Pollard K., Mead P., Petersen J.M., Whitener C.J. Francisella novicida bacteremia after a near-drowning accident. J. Clin. Microbiol. 2012;50:2826–2829. doi: 10.1128/JCM.00995-12. PubMed DOI PMC
Yeni D.K., Büyük F., Ashraf A., Shah M. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021;66:1–14. doi: 10.1007/s12223-020-00827-z. PubMed DOI PMC
Wawszczak M., Banaszczak B., Rastawicki W. Tularaemia-a diagnostic challenge. Ann. Agric. Environ. Med. AAEM. 2022;29:12–21. doi: 10.26444/aaem/139242. PubMed DOI
Sjöstedt A. Tularemia: History, epidemiology, pathogen physiology, and clinical manifestations. Ann. N. Y. Acad. Sci. 2007;1105:1–29. doi: 10.1196/annals.1409.009. PubMed DOI
Rowe H.M., Huntley J.F. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front. Cell. Infect. Microbiol. 2015;5:94. doi: 10.3389/fcimb.2015.00094. PubMed DOI PMC
Abd H., Johansson T., Golovliov I., Sandstrom G., Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 2003;69:600–606. doi: 10.1128/AEM.69.1.600-606.2003. PubMed DOI PMC
Celli J., Zahrt T.C. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 2013;3:a010314. doi: 10.1101/cshperspect.a010314. PubMed DOI PMC
Jones C.L., Napier B.A., Sampson T.R., Llewellyn A.C., Schroeder M.R., Weiss D.S. Subversion of host recognition and defense systems by Francisella spp. Microbiol. Mol. Biol. Rev. 2012;76:383–404. doi: 10.1128/MMBR.05027-11. PubMed DOI PMC
Santic M., Molmeret M., Klose K.E., Abu Kwaik Y. Francisella tularensis travels a novel, twisted road within macrophages. Trends Microbiol. 2006;14:37–44. doi: 10.1016/j.tim.2005.11.008. PubMed DOI
El-Etr S.H., Margolis J.J., Monack D., Robison R.A., Cohen M., Moore E., Rasley A. Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl. Environ. Microbiol. 2009;75:7488–7500. doi: 10.1128/AEM.01829-09. PubMed DOI PMC
Kebbi-Beghdadi C., Greub G. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: The Chlamydia paradigm. Environ. Microbiol. Rep. 2014;6:309–324. doi: 10.1111/1758-2229.12155. PubMed DOI
Santic M., Ozanic M., Semic V., Pavokovic G., Mrvcic V., Kwaik Y.A. Intra-Vacuolar Proliferation of F. novicida within H. vermiformis. Front. Microbiol. 2011;2:78. doi: 10.3389/fmicb.2011.00078. PubMed DOI PMC
Lauriano C.M., Barker J.R., Yoon S.S., Nano F.E., Arulanandam B.P., Hassett D.J., Klose K.E. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl. Acad. Sci. USA. 2004;101:4246–4249. doi: 10.1073/pnas.0307690101. PubMed DOI PMC
Lampe E.O., Brenz Y., Herrmann L., Repnik U., Griffiths G., Zingmark C., Sjöstedt A., Winther-Larsen H.C., Hagedorn M. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl. Environ. Microbiol. 2015;82:1586–1598. doi: 10.1128/AEM.02950-15. PubMed DOI PMC
Kelava I., Marecic V., Fucak P., Ivek E., Kolaric D., Ozanic M., Mihelcic M., Santic M. Optimisation of External Factors for the Growth of Francisella novicida within Dictyostelium discoideum. BioMed Res. Int. 2020;2020:6826983. doi: 10.1155/2020/6826983. PubMed DOI PMC
Bozzaro S., Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr. Drug Targets. 2011;12:942–954. doi: 10.2174/138945011795677782. PubMed DOI PMC
Dunn J.D., Bosmani C., Barisch C., Raykov L., Lefrancois L.H., Cardenal-Munoz E., Lopez-Jimenez A.T., Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front. Immunol. 2017;8:1906. doi: 10.3389/fimmu.2017.01906. PubMed DOI PMC
Bozzaro S., Bucci C., Steinert M. Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. Int. Rev. Cell Mol. Biol. 2008;271:253–300. doi: 10.1016/S1937-6448(08)01206-9. PubMed DOI
Gotthardt D., Warnatz H.J., Henschel O., Bruckert F., Schleicher M., Soldati T. High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol. Biol. Cell. 2002;13:3508–3520. doi: 10.1091/mbc.e02-04-0206. PubMed DOI PMC
Arigoni M., Bracco E., Lusche D.F., Kae H., Weeks G., Bozzaro S. A novel Dictyostelium RasGEF required for chemotaxis and development. BMC Cell Biol. 2005;6:43. doi: 10.1186/1471-2121-6-43. PubMed DOI PMC
Lim C.J., Zawadzki K.A., Khosla M., Secko D.M., Spiegelman G.B., Weeks G. Loss of the Dictyostelium RasC protein alters vegetative cell size, motility and endocytosis. Exp. Cell Res. 2005;306:47–55. doi: 10.1016/j.yexcr.2005.02.002. PubMed DOI
Vines J.H., King J.S. The endocytic pathways of Dictyostelium discoideum. Int. J. Dev. Biol. 2019;63:461–471. doi: 10.1387/ijdb.190236jk. PubMed DOI
Clarke M., Kohler J., Arana Q., Liu T., Heuser J., Gerisch G. Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J. Cell Sci. 2002;115:2893–2905. doi: 10.1242/jcs.115.14.2893. PubMed DOI
Bedard K., Lardy B., Krause K.H. NOX family NADPH oxidases: Not just in mammals. Biochimie. 2007;89:1107–1112. doi: 10.1016/j.biochi.2007.01.012. PubMed DOI
Lardy B., Bof M., Aubry L., Paclet M.H., Morel F., Satre M., Klein G. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim. Biophys. Acta. 2005;1744:199–212. doi: 10.1016/j.bbamcr.2005.02.004. PubMed DOI
Finsel I., Hoffmann C., Hilbi H. Immunomagnetic purification of fluorescent Legionella-containing vacuoles. Methods Mol. Biol. 2013;983:431–443. doi: 10.1007/978-1-62703-302-2_24. PubMed DOI
Hoffmann C., Finsel I., Otto A., Pfaffinger G., Rothmeier E., Hecker M., Becher D., Hilbi H. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell. Microbiol. 2014;16:1034–1052. doi: 10.1111/cmi.12256. PubMed DOI
Shevchuk O., Batzilla C., Hagele S., Kusch H., Engelmann S., Hecker M., Haas A., Heuner K., Glockner G., Steinert M. Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int. J. Med. Microbiol. 2009;299:489–508. doi: 10.1016/j.ijmm.2009.03.006. PubMed DOI
Urwyler S., Finsel I., Ragaz C., Hilbi H. Isolation of Legionella-containing vacuoles by immuno-magnetic separation. Curr. Protoc. Cell Biol. 2010;46 doi: 10.1002/0471143030.cb0334s46. PubMed DOI
Ansong C., Wu S., Meng D., Liu X., Brewer H.M., Deatherage Kaiser B.L., Nakayasu E.S., Cort J.R., Pevzner P., Smith R.D., et al. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella typhimurium in response to infection-like conditions. Proc. Natl. Acad. Sci. USA. 2013;110:10153–10158. doi: 10.1073/pnas.1221210110. PubMed DOI PMC
Valenzuela C., Gil M., Urrutia I.M., Sabag A., Enninga J., Santiviago C.A. SopB- and SifA-dependent shaping of the Salmonella-containing vacuole proteome in the social amoeba Dictyostelium discoideum. Cell. Microbiol. 2021;23:e13263. doi: 10.1111/cmi.13263. PubMed DOI
Koliwer-Brandl H., Knobloch P., Barisch C., Welin A., Hanna N., Soldati T., Hilbi H. Distinct Mycobacterium marinum phosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell. Microbiol. 2019;21:e13008. doi: 10.1111/cmi.13008. PubMed DOI
Fortier A.H., Green S.J., Polsinelli T., Jones T.R., Crawford R.M., Leiby D.A., Elkins K.L., Meltzer M.S., Nacy C.A. Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol. Ser. 1994;60:349–361. PubMed
Llewellyn A.C., Jones C.L., Napier B.A., Bina J.E., Weiss D.S. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS ONE. 2011;6:e24201. doi: 10.1371/journal.pone.0024201. PubMed DOI PMC
Santic M., Akimana C., Asare R., Kouokam J.C., Atay S., Kwaik Y.A. Intracellular fate of Francisella tularensis within arthropod-derived cells. Environ. Microbiol. 2009;11:1473–1481. doi: 10.1111/j.1462-2920.2009.01875.x. PubMed DOI
Mitchell G., Chen C., Portnoy D.A. Strategies Used by Bacteria to Grow in Macrophages. Microbiol. Spectr. 2016;4:701–725. doi: 10.1128/microbiolspec.MCHD-0012-2015. PubMed DOI PMC
Marecic V., Shevchuk O., Ozanic M., Mihelcic M., Steinert M., Jurak Begonja A., Abu Kwaik Y., Santic M. Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages. Front. Cell. Infect. Microbiol. 2017;7:303. doi: 10.3389/fcimb.2017.00303. PubMed DOI PMC
Rodriguez-Paris J.M., Nolta K.V., Steck T.L. Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J. Biol. Chem. 1993;268:9110–9116. doi: 10.1016/S0021-9258(18)52984-7. PubMed DOI
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Huang d.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Gaudet P., Pilcher K.E., Fey P., Chisholm R.L. Transformation of Dictyostelium discoideum with plasmid DNA. Nat. Protoc. 2007;2:1317–1324. doi: 10.1038/nprot.2007.179. PubMed DOI
Niedergang F., Chavrier P. Regulation of phagocytosis by Rho GTPases. Bact. Virulence Factors Rho GTPases. 2005;291:43–60. doi: 10.1007/3-540-27511-8_4. PubMed DOI
Kovarova H., Halada P., Man P., Golovliov I., Krocova Z., Spacek J., Porkertova S., Necasova R. Proteome study of Francisella tularensis live vaccine strain-containing phagosome in Bcg/Nramp1 congenic macrophages: Resistant allele contributes to permissive environment and susceptibility to infection. Proteomics. 2002;2:85–93. doi: 10.1002/1615-9861(200201)2:1<85::AID-PROT85>3.0.CO;2-S. PubMed DOI
Herweg J.A., Hansmeier N., Otto A., Geffken A.C., Subbarayal P., Prusty B.K., Becher D., Hensel M., Schaible U.E., Rudel T., et al. Purification and proteomics of pathogen-modified vacuoles and membranes. Front. Cell. Infect. Microbiol. 2015;5:48. doi: 10.3389/fcimb.2015.00048. PubMed DOI PMC
Ericsson M., Golovliov I., Sandstrom G., Tarnvik A., Sjostedt A. Characterization of the nucleotide sequence of the groE operon encoding heat shock proteins chaperone-60 and -10 of Francisella tularensis and determination of the T-cell response to the proteins in individuals vaccinated with F. tularensis. Infect. Immun. 1997;65:1824–1829. doi: 10.1128/iai.65.5.1824-1829.1997. PubMed DOI PMC
Waldo R.H., Cummings E.D., Sarva S.T., Brown J.M., Lauriano C.M., Rose L.A., Belland R.J., Klose K.E., Hilliard G.M. Proteome cataloging and relative quantification of Francisella tularensis tularensis strain Schu4 in 2D PAGE using preparative isoelectric focusing. J. Proteome Res. 2007;6:3484–3490. doi: 10.1021/pr070107m. PubMed DOI
Marinovic M., Xiong H., Rivero F., Weber I. Assaying Rho GTPase-Dependent Processes in Dictyostelium discoideum. Methods Mol. Biol. 2018;1821:371–392. doi: 10.1007/978-1-4939-8612-5_25. PubMed DOI
Peracino B., Balest A., Bozzaro S. Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J. Cell Sci. 2010;123:4039–4051. doi: 10.1242/jcs.072124. PubMed DOI
Santic M., Asare R., Skrobonja I., Jones S., Abu Kwaik Y. Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 2008;76:2671–2677. doi: 10.1128/IAI.00185-08. PubMed DOI PMC
Rupper A., Grove B., Cardelli J. Rab7 regulates phagosome maturation in Dictyostelium. J. Cell Sci. 2001;114:2449–2460. doi: 10.1242/jcs.114.13.2449. PubMed DOI
Kagan J.C., Roy C.R. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat. Cell Biol. 2002;4:945–954. doi: 10.1038/ncb883. PubMed DOI
Kagan J.C., Stein M.P., Pypaert M., Roy C.R. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J. Exp. Med. 2004;199:1201–1211. doi: 10.1084/jem.20031706. PubMed DOI PMC
Nagai H., Roy C.R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 2001;20:5962–5970. doi: 10.1093/emboj/20.21.5962. PubMed DOI PMC
Tilney L.G., Harb O.S., Connelly P.S., Robinson C.G., Roy C.R. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: Implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 2001;114:4637–4650. doi: 10.1242/jcs.114.24.4637. PubMed DOI