Optimizing Ammonia Detection with a Polyaniline-Magnesia Nano Composite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
project number CL/CO/A/3.
King Khalid University
PubMed
39458720
PubMed Central
PMC11511220
DOI
10.3390/polym16202892
PII: polym16202892
Knihovny.cz E-resources
- Keywords
- Fourier transform infrared spectroscopy, ammonia sensing, in-situ oxidative polymerization, nanocomposites, polyaniline magnesia,
- Publication type
- Journal Article MeSH
Polyaniline-magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH3) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications.
Central Labs King Khalid University AlQura'a Abha P O Box 960 Saudi Arabia
Department of Civil Engineering Jain College of Engineering Belagavi 590014 Karnataka India
See more in PubMed
Singh P., Shukla S.K. Advances in Polyaniline-Based Nanocomposites. J. Mater. Sci. 2020;55:1331–1365. doi: 10.1007/s10853-019-04141-z. DOI
Rajendran V., Mohan A.M.V., Jayaraman M., Nakagawa T. All-Printed, Interdigitated, Freestanding Serpentine Interconnects Based Flexible Solid State Supercapacitor for Self Powered Wearable Electronics. Nano Energy. 2019;65:104055. doi: 10.1016/j.nanoen.2019.104055. DOI
Song M., Yu H., Zhu J., Ouyang Z., Abdalkarim S.Y.H., Tam K.C., Li Y. Constructing Stimuli-Free Self-Healing, Robust and Ultrasensitive Biocompatible Hydrogel Sensors with Conductive Cellulose Nanocrystals. Chem. Eng. J. 2020;398:125547. doi: 10.1016/j.cej.2020.125547. DOI
Ghorbani Zamani F., Moulahoum H., Ak M., Odaci Demirkol D., Timur S. Current Trends in the Development of Conducting Polymers-Based Biosensors. TrAC Trends Anal. Chem. 2019;118:264–276. doi: 10.1016/j.trac.2019.05.031. DOI
Qiu H.-J., Song W.-Z., Wang X.-X., Zhang J., Fan Z., Yu M., Ramakrishna S., Long Y.-Z. A Calibration-Free Self-Powered Sensor for Vital Sign Monitoring and Finger Tap Communication Based on Wearable Triboelectric Nanogenerator. Nano Energy. 2019;58:536–542. doi: 10.1016/j.nanoen.2019.01.069. DOI
Chakraborty P., Guterman T., Adadi N., Yadid M., Brosh T., Adler-Abramovich L., Dvir T., Gazit E. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano. 2019;13:163–175. doi: 10.1021/acsnano.8b05067. PubMed DOI PMC
Xiong C., Li M., Zhao W., Duan C., Dai L., Shen M., Xu Y., Ni Y. A Smart Paper@polyaniline Nanofibers Incorporated Vitrimer Bifunctional Device with Reshaping, Shape-Memory and Self-Healing Properties Applied in High-Performance Supercapacitors and Sensors. Chem. Eng. J. 2020;396:125318. doi: 10.1016/j.cej.2020.125318. DOI
Wang Y., Chao M., Wan P., Zhang L. A Wearable Breathable Pressure Sensor from Metal-Organic Framework Derived Nanocomposites for Highly Sensitive Broad-Range Healthcare Monitoring. Nano Energy. 2020;70:104560. doi: 10.1016/j.nanoen.2020.104560. DOI
Li S., Liu A., Yang Z., Zhao L., Wang J., Liu F., You R., He J., Wang C., Yan X., et al. Design and Preparation of the WO3 Hollow Spheres@ PANI Conducting Films for Room Temperature Flexible NH3 Sensing Device. Sens. Actuators B Chem. 2019;289:252–259. doi: 10.1016/j.snb.2019.03.073. DOI
Shi K., Zou H., Sun B., Jiang P., He J., Huang X. Dielectric Modulated Cellulose Paper/PDMS-Based Triboelectric Nanogenerators for Wireless Transmission and Electropolymerization Applications. Adv. Funct. Mater. 2020;30:1904536. doi: 10.1002/adfm.201904536. DOI
Chowdhury A.D., Takemura K., Li T.-C., Suzuki T., Park E.Y. Electrical Pulse-Induced Electrochemical Biosensor for Hepatitis E Virus Detection. Nat. Commun. 2019;10:3737. doi: 10.1038/s41467-019-11644-5. PubMed DOI PMC
Liu N., Song J., Lu Y., Davis J.J., Gao F., Luo X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019;91:8334–8340. doi: 10.1021/acs.analchem.9b01129. PubMed DOI
Shoaie N., Daneshpour M., Azimzadeh M., Mahshid S., Khoshfetrat S.M., Jahanpeyma F., Gholaminejad A., Omidfar K., Foruzandeh M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchim. Acta. 2019;186:465. doi: 10.1007/s00604-019-3588-1. PubMed DOI
Li S., Ma Y., Liu Y., Xin G., Wang M., Zhang Z., Liu Z. Electrochemical Sensor Based on a Three Dimensional Nanostructured MoS2 Nanosphere-PANI/Reduced Graphene Oxide Composite for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. RSC Adv. 2019;9:2997–3003. doi: 10.1039/C8RA09511F. PubMed DOI PMC
Celiesiute R., Ramanaviciene A., Gicevicius M., Ramanavicius A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit. Rev. Anal. Chem. 2019;49:195–208. doi: 10.1080/10408347.2018.1499009. PubMed DOI
Chu X., Huang H., Zhang H., Zhang H., Gu B., Su H., Liu F., Han Y., Wang Z., Chen N., et al. Electrochemically Building Three-Dimensional Supramolecular Polymer Hydrogel for Flexible Solid-State Micro-Supercapacitors. Electrochim. Acta. 2019;301:136–144. doi: 10.1016/j.electacta.2019.01.165. DOI
Sonker R.K., Yadav B.C., Gupta V., Tomar M. Fabrication and Characterization of ZnO-TiO2-PANI (ZTP) Micro/Nanoballs for the Detection of Flammable and Toxic Gases. J. Hazard. Mater. 2019;370:126–137. doi: 10.1016/j.jhazmat.2018.10.016. PubMed DOI
Chethan B., Raj Prakash H.G., Ravikiran Y.T., Vijayakumari S.C., Ramana C.H.V.V., Thomas S., Kim D. Enhancing Humidity Sensing Performance of Polyaniline/Water Soluble Graphene Oxide Composite. Talanta. 2019;196:337–344. doi: 10.1016/j.talanta.2018.12.072. PubMed DOI
Liu T., Guo Y., Zhang Z., Miao Z., Zhang X., Su Z. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-Enzymatic Electrochemical Detection of H2O2 and Glucose. Sens. Actuators B Chem. 2019;286:370–376. doi: 10.1016/j.snb.2019.02.006. DOI
Makwana S., Patil V.B., Patel M., Upadhyay J., Shah A. A Validated Stability-Indicating Method for Separation of Prucalopride Drug by HPLC: Method Transfer to UPLC. Anal. Chem. Lett. 2021;11:580–595. doi: 10.1080/22297928.2021.1911680. DOI
Patil V.B., Nadagouda M.N., Ture S.A., Yelamaggad C.V., Abbaraju V. Detection of Energetic Materials via Polyaniline and Its Different Modified Forms. Polym. Adv. Technol. 2021;32:4663–4677. doi: 10.1002/pat.5458. DOI
Synthesis and Fluorescence Sensing of Energetic Materials Using Benzenesulfonic Acid-Doped Polyaniline. [(accessed on 29 October 2021)]. Available online: https://www.springerprofessional.de/en/synthesis-and-fluorescence-sensing-of-energetic-materials-using-/19349346.
Kamat V., Yallur B.C., Poojary B., Patil V.B., Nayak S.P., Krishna P.M., Joshi S.D. Synthesis, Molecular Docking, Antibacterial, and Anti-Inflammatory Activities of Benzimidazole-Containing Tricyclic Systems. J. Chin. Chem. Soc. 2021;68:1055–1066. doi: 10.1002/jccs.202000454. DOI
Patil V.B., Ture S.A., Yelamaggad C.V., Nadagouda M.N., Venkataraman A. Turn-off Fluorescent Sensing of Energetic Materials Using Protonic Acid Doped Polyaniline: A Spectrochemical Mechanistic Approach. Z. Anorg. Allg. Chem. 2021;647:331–340. doi: 10.1002/zaac.202000321. DOI
Ture S.A., Patil V.B., Yelamaggad C.V., Martínez-Máñez R., Abbaraju V. Understanding of Mechanistic Perspective in Sensing of Energetic Nitro Compounds through Spectroscopic and Electrochemical Studies. J. Appl. Polym. Sci. 2021;138:50776. doi: 10.1002/app.50776. DOI
Rahimi R., Ochoa M., Parupudi T., Zhao X., Yazdi I.K., Dokmeci M.R., Tamayol A., Khademhosseini A., Ziaie B. A Low-Cost Flexible pH Sensor Array for Wound Assessment. Sens. Actuators B Chem. 2016;229:609–617. doi: 10.1016/j.snb.2015.12.082. DOI
Tatiana N. Tikhonova, Dana Cohen-Gerassi, Zohar A. Arnon, Yuri Efremov, Peter Timashev, Lihi Adler-Abramovich, Evgeny A. Shirshin. Tunable Self-Assembled Peptide Hydrogel Sensor for Pharma Cold Supply Chain. ACS Appl. Mater. Interfaces. 2022;14:55392–55401. doi: 10.1021/acsami.2c17609. PubMed DOI PMC
Jian K.-S., Chang C.-J., Wu J.J., Chang Y.-C., Tsay C.-Y., Chen J.-H., Horng T.-L., Lee G.-J., Karuppasamy L., Anandan S., et al. High Response CO Sensor Based on a Polyaniline/SnO2 Nanocomposite. Polymers. 2019;11:184. doi: 10.3390/polym11010184. PubMed DOI PMC
Mousavi S., Kang K., Park J., Park I. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv. 2016;6:104131–104138. doi: 10.1039/C6RA20710C. DOI
Fu Y., He H., Zhao T., Dai Y., Han W., Ma J., Xing L., Zhang Y., Xue X. A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application. Nano-Micro Lett. 2018;10:76. doi: 10.1007/s40820-018-0228-y. PubMed DOI PMC
Suhail M.H., Abdullah O.G., Kadhim G.A. Hydrogen Sulfide Sensors Based on PANI/f-SWCNT Polymer Nanocomposite Thin Films Prepared by Electrochemical Polymerization. J. Sci. Adv. Mater. Devices. 2019;4:143–149. doi: 10.1016/j.jsamd.2018.11.006. DOI
Ly T.N., Park S. Highly Sensitive Ammonia Sensor for Diagnostic Purpose Using Reduced Graphene Oxide and Conductive Polymer. Sci. Rep. 2018;8:18030. doi: 10.1038/s41598-018-36468-z. PubMed DOI PMC
Mishra R.K., Barfidokht A., Karajic A., Sempionatto J.R., Wang J., Wang J. Wearable Potentiometric Tattoo Biosensor for On-Body Detection of G-Type Nerve Agents Simulants. Sens. Actuators B Chem. 2018;273:966–972. doi: 10.1016/j.snb.2018.07.001. DOI
Zhou Z., Zhang X., Wu X., Lu C. Self-Stabilized Polyaniline@graphene Aqueous Colloids for the Construction of Assembled Conductive Network in Rubber Matrix and Its Chemical Sensing Application. Compos. Sci. Technol. 2016;125:1–8. doi: 10.1016/j.compscitech.2016.01.016. DOI
Khalaf A.L., Mohamad F.S., Abdul Rahman N., Lim H.N., Paiman S., Yusof N.A., Mahdi M.A., Yaacob M.H. Room Temperature Ammonia Sensor Using Side-Polished Optical Fiber Coated with Graphene/Polyaniline Nanocomposite. Opt. Mater. Express. 2017;7:1858–1870. doi: 10.1364/OME.7.001858. DOI
Park H.J., Yoon J.H., Lee K.G., Choi B.G. Potentiometric Performance of Flexible pH Sensor Based on Polyaniline Nanofiber Arrays. Nano Converg. 2019;6:9. doi: 10.1186/s40580-019-0179-0. PubMed DOI PMC
Hong S.Y., Oh J.H., Park H., Yun J.Y., Jin S.W., Sun L., Zi G., Ha J.S. Polyurethane Foam Coated with a Multi-Walled Carbon Nanotube/Polyaniline Nanocomposite for a Skin-like Stretchable Array of Multi-Functional Sensors. NPG Asia Mater. 2017;9:e448. doi: 10.1038/am.2017.194. DOI
Komathi S., Gopalan A.I., Muthuchamy N., Lee K.P. Polyaniline Nanoflowers Grafted onto Nanodiamonds via a Soft Template-Guided Secondary Nucleation Process for High-Performance Glucose Sensing. RSC Adv. 2017;7:15342–15351. doi: 10.1039/C6RA24760A. DOI
Chinnathambi S., Euverink G.J.W. Polyaniline Functionalized Electrochemically Reduced Graphene Oxide Chemiresistive Sensor to Monitor the pH in Real Time during Microbial Fermentations. Sens. Actuators B Chem. 2018;264:38–44. doi: 10.1016/j.snb.2018.02.087. DOI
Humpolíček P., Radaszkiewicz K.A., Capáková Z., Pacherník J., Bober P., Kašpárková V., Rejmontová P., Lehocký M., Ponížil P., Stejskal J. Polyaniline Cryogels: Biocompatibility of Novel Conducting Macroporous Material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. PubMed DOI PMC
Zhuang X., Tian C., Luan F., Wu X., Chen L. One-Step Electrochemical Fabrication of a Nickel Oxide Nanoparticle/Polyaniline Nanowire/Graphene Oxide Hybrid on a Glassy Carbon Electrode for Use as a Non-Enzymatic Glucose Biosensor. RSC Adv. 2016;6:92541–92546. doi: 10.1039/C6RA14970G. DOI
Yu Y., Joshi P.C., Wu J., Hu A. Laser-Induced Carbon-Based Smart Flexible Sensor Array for Multiflavors Detection. ACS Appl. Mater. Interfaces. 2018;10:34005–34012. doi: 10.1021/acsami.8b12626. PubMed DOI
Tian Y., Qu K., Zeng X. Investigation into the Ring-Substituted Polyanilines and Their Application for the Detection and Adsorption of Sulfur Dioxide. Sens. Actuators B Chem. 2017;249:423–430. doi: 10.1016/j.snb.2017.04.057. PubMed DOI PMC
Hadi A.A., Shaipuzaman N.N., Aspar M.A.S.M., Salim M.R., Manap H. Advancements in Ammonia Gas Detection: A Comparative Study of Sensor Technologies. Int. J. Electr. Comput. Eng. 2024;14:5107–5116. doi: 10.11591/ijece.v14i5.pp5107-5116. DOI
Xu K., Zheng W. Fabrication of Graphene-Based Ammonia Sensors: A Review. Curr. Nanosci. 2024;20:578–598. doi: 10.2174/1573413719666230829142724. DOI
Singh R., Agrohiya S., Rawal I., Ohlan A., Dahiya S., Punia R., Maan A.S. Porous Polyaniline/Flower-like Hybrid Phase MoS2/Phosphorus-Doped Graphene Ternary Nanocomposite for Efficient Room Temperature Ammonia Sensors. Synth. Met. 2024;307:117676. doi: 10.1016/j.synthmet.2024.117676. DOI
Soudi M., Cencillo-Abad P., Patel J., Ghimire S., Dillon J., Biswas A., Mukhopadhyay K., Chanda D. Self-Assembled Plasmonic Structural Color Colorimetric Sensor for Smartphone-Based Point-Of-Care Ammonia Detection in Water. ACS Appl. Mater. Interfaces. 2024;16:45632–45639. doi: 10.1021/acsami.4c06615. PubMed DOI
Rosiers M., Falzone C., Martin J., Clarisse L., Van Damme M., Coheur P., Romain A.-C. Monitoring Atmospheric Ammonia with Satellite and On-Field Gas Sensor Array Measurement Techniques; Proceedings of the 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN); Grapevine, TX, USA. 12–15 May 2024; pp. 1–4.