• This record comes from PubMed

Optimizing Ammonia Detection with a Polyaniline-Magnesia Nano Composite

. 2024 Oct 14 ; 16 (20) : . [epub] 20241014

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
project number CL/CO/A/3. King Khalid University

Polyaniline-magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH3) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications.

See more in PubMed

Singh P., Shukla S.K. Advances in Polyaniline-Based Nanocomposites. J. Mater. Sci. 2020;55:1331–1365. doi: 10.1007/s10853-019-04141-z. DOI

Rajendran V., Mohan A.M.V., Jayaraman M., Nakagawa T. All-Printed, Interdigitated, Freestanding Serpentine Interconnects Based Flexible Solid State Supercapacitor for Self Powered Wearable Electronics. Nano Energy. 2019;65:104055. doi: 10.1016/j.nanoen.2019.104055. DOI

Song M., Yu H., Zhu J., Ouyang Z., Abdalkarim S.Y.H., Tam K.C., Li Y. Constructing Stimuli-Free Self-Healing, Robust and Ultrasensitive Biocompatible Hydrogel Sensors with Conductive Cellulose Nanocrystals. Chem. Eng. J. 2020;398:125547. doi: 10.1016/j.cej.2020.125547. DOI

Ghorbani Zamani F., Moulahoum H., Ak M., Odaci Demirkol D., Timur S. Current Trends in the Development of Conducting Polymers-Based Biosensors. TrAC Trends Anal. Chem. 2019;118:264–276. doi: 10.1016/j.trac.2019.05.031. DOI

Qiu H.-J., Song W.-Z., Wang X.-X., Zhang J., Fan Z., Yu M., Ramakrishna S., Long Y.-Z. A Calibration-Free Self-Powered Sensor for Vital Sign Monitoring and Finger Tap Communication Based on Wearable Triboelectric Nanogenerator. Nano Energy. 2019;58:536–542. doi: 10.1016/j.nanoen.2019.01.069. DOI

Chakraborty P., Guterman T., Adadi N., Yadid M., Brosh T., Adler-Abramovich L., Dvir T., Gazit E. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano. 2019;13:163–175. doi: 10.1021/acsnano.8b05067. PubMed DOI PMC

Xiong C., Li M., Zhao W., Duan C., Dai L., Shen M., Xu Y., Ni Y. A Smart Paper@polyaniline Nanofibers Incorporated Vitrimer Bifunctional Device with Reshaping, Shape-Memory and Self-Healing Properties Applied in High-Performance Supercapacitors and Sensors. Chem. Eng. J. 2020;396:125318. doi: 10.1016/j.cej.2020.125318. DOI

Wang Y., Chao M., Wan P., Zhang L. A Wearable Breathable Pressure Sensor from Metal-Organic Framework Derived Nanocomposites for Highly Sensitive Broad-Range Healthcare Monitoring. Nano Energy. 2020;70:104560. doi: 10.1016/j.nanoen.2020.104560. DOI

Li S., Liu A., Yang Z., Zhao L., Wang J., Liu F., You R., He J., Wang C., Yan X., et al. Design and Preparation of the WO3 Hollow Spheres@ PANI Conducting Films for Room Temperature Flexible NH3 Sensing Device. Sens. Actuators B Chem. 2019;289:252–259. doi: 10.1016/j.snb.2019.03.073. DOI

Shi K., Zou H., Sun B., Jiang P., He J., Huang X. Dielectric Modulated Cellulose Paper/PDMS-Based Triboelectric Nanogenerators for Wireless Transmission and Electropolymerization Applications. Adv. Funct. Mater. 2020;30:1904536. doi: 10.1002/adfm.201904536. DOI

Chowdhury A.D., Takemura K., Li T.-C., Suzuki T., Park E.Y. Electrical Pulse-Induced Electrochemical Biosensor for Hepatitis E Virus Detection. Nat. Commun. 2019;10:3737. doi: 10.1038/s41467-019-11644-5. PubMed DOI PMC

Liu N., Song J., Lu Y., Davis J.J., Gao F., Luo X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019;91:8334–8340. doi: 10.1021/acs.analchem.9b01129. PubMed DOI

Shoaie N., Daneshpour M., Azimzadeh M., Mahshid S., Khoshfetrat S.M., Jahanpeyma F., Gholaminejad A., Omidfar K., Foruzandeh M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Microchim. Acta. 2019;186:465. doi: 10.1007/s00604-019-3588-1. PubMed DOI

Li S., Ma Y., Liu Y., Xin G., Wang M., Zhang Z., Liu Z. Electrochemical Sensor Based on a Three Dimensional Nanostructured MoS2 Nanosphere-PANI/Reduced Graphene Oxide Composite for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. RSC Adv. 2019;9:2997–3003. doi: 10.1039/C8RA09511F. PubMed DOI PMC

Celiesiute R., Ramanaviciene A., Gicevicius M., Ramanavicius A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit. Rev. Anal. Chem. 2019;49:195–208. doi: 10.1080/10408347.2018.1499009. PubMed DOI

Chu X., Huang H., Zhang H., Zhang H., Gu B., Su H., Liu F., Han Y., Wang Z., Chen N., et al. Electrochemically Building Three-Dimensional Supramolecular Polymer Hydrogel for Flexible Solid-State Micro-Supercapacitors. Electrochim. Acta. 2019;301:136–144. doi: 10.1016/j.electacta.2019.01.165. DOI

Sonker R.K., Yadav B.C., Gupta V., Tomar M. Fabrication and Characterization of ZnO-TiO2-PANI (ZTP) Micro/Nanoballs for the Detection of Flammable and Toxic Gases. J. Hazard. Mater. 2019;370:126–137. doi: 10.1016/j.jhazmat.2018.10.016. PubMed DOI

Chethan B., Raj Prakash H.G., Ravikiran Y.T., Vijayakumari S.C., Ramana C.H.V.V., Thomas S., Kim D. Enhancing Humidity Sensing Performance of Polyaniline/Water Soluble Graphene Oxide Composite. Talanta. 2019;196:337–344. doi: 10.1016/j.talanta.2018.12.072. PubMed DOI

Liu T., Guo Y., Zhang Z., Miao Z., Zhang X., Su Z. Fabrication of Hollow CuO/PANI Hybrid Nanofibers for Non-Enzymatic Electrochemical Detection of H2O2 and Glucose. Sens. Actuators B Chem. 2019;286:370–376. doi: 10.1016/j.snb.2019.02.006. DOI

Makwana S., Patil V.B., Patel M., Upadhyay J., Shah A. A Validated Stability-Indicating Method for Separation of Prucalopride Drug by HPLC: Method Transfer to UPLC. Anal. Chem. Lett. 2021;11:580–595. doi: 10.1080/22297928.2021.1911680. DOI

Patil V.B., Nadagouda M.N., Ture S.A., Yelamaggad C.V., Abbaraju V. Detection of Energetic Materials via Polyaniline and Its Different Modified Forms. Polym. Adv. Technol. 2021;32:4663–4677. doi: 10.1002/pat.5458. DOI

Synthesis and Fluorescence Sensing of Energetic Materials Using Benzenesulfonic Acid-Doped Polyaniline. [(accessed on 29 October 2021)]. Available online: https://www.springerprofessional.de/en/synthesis-and-fluorescence-sensing-of-energetic-materials-using-/19349346.

Kamat V., Yallur B.C., Poojary B., Patil V.B., Nayak S.P., Krishna P.M., Joshi S.D. Synthesis, Molecular Docking, Antibacterial, and Anti-Inflammatory Activities of Benzimidazole-Containing Tricyclic Systems. J. Chin. Chem. Soc. 2021;68:1055–1066. doi: 10.1002/jccs.202000454. DOI

Patil V.B., Ture S.A., Yelamaggad C.V., Nadagouda M.N., Venkataraman A. Turn-off Fluorescent Sensing of Energetic Materials Using Protonic Acid Doped Polyaniline: A Spectrochemical Mechanistic Approach. Z. Anorg. Allg. Chem. 2021;647:331–340. doi: 10.1002/zaac.202000321. DOI

Ture S.A., Patil V.B., Yelamaggad C.V., Martínez-Máñez R., Abbaraju V. Understanding of Mechanistic Perspective in Sensing of Energetic Nitro Compounds through Spectroscopic and Electrochemical Studies. J. Appl. Polym. Sci. 2021;138:50776. doi: 10.1002/app.50776. DOI

Rahimi R., Ochoa M., Parupudi T., Zhao X., Yazdi I.K., Dokmeci M.R., Tamayol A., Khademhosseini A., Ziaie B. A Low-Cost Flexible pH Sensor Array for Wound Assessment. Sens. Actuators B Chem. 2016;229:609–617. doi: 10.1016/j.snb.2015.12.082. DOI

Tatiana N. Tikhonova, Dana Cohen-Gerassi, Zohar A. Arnon, Yuri Efremov, Peter Timashev, Lihi Adler-Abramovich, Evgeny A. Shirshin. Tunable Self-Assembled Peptide Hydrogel Sensor for Pharma Cold Supply Chain. ACS Appl. Mater. Interfaces. 2022;14:55392–55401. doi: 10.1021/acsami.2c17609. PubMed DOI PMC

Jian K.-S., Chang C.-J., Wu J.J., Chang Y.-C., Tsay C.-Y., Chen J.-H., Horng T.-L., Lee G.-J., Karuppasamy L., Anandan S., et al. High Response CO Sensor Based on a Polyaniline/SnO2 Nanocomposite. Polymers. 2019;11:184. doi: 10.3390/polym11010184. PubMed DOI PMC

Mousavi S., Kang K., Park J., Park I. A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv. 2016;6:104131–104138. doi: 10.1039/C6RA20710C. DOI

Fu Y., He H., Zhao T., Dai Y., Han W., Ma J., Xing L., Zhang Y., Xue X. A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application. Nano-Micro Lett. 2018;10:76. doi: 10.1007/s40820-018-0228-y. PubMed DOI PMC

Suhail M.H., Abdullah O.G., Kadhim G.A. Hydrogen Sulfide Sensors Based on PANI/f-SWCNT Polymer Nanocomposite Thin Films Prepared by Electrochemical Polymerization. J. Sci. Adv. Mater. Devices. 2019;4:143–149. doi: 10.1016/j.jsamd.2018.11.006. DOI

Ly T.N., Park S. Highly Sensitive Ammonia Sensor for Diagnostic Purpose Using Reduced Graphene Oxide and Conductive Polymer. Sci. Rep. 2018;8:18030. doi: 10.1038/s41598-018-36468-z. PubMed DOI PMC

Mishra R.K., Barfidokht A., Karajic A., Sempionatto J.R., Wang J., Wang J. Wearable Potentiometric Tattoo Biosensor for On-Body Detection of G-Type Nerve Agents Simulants. Sens. Actuators B Chem. 2018;273:966–972. doi: 10.1016/j.snb.2018.07.001. DOI

Zhou Z., Zhang X., Wu X., Lu C. Self-Stabilized Polyaniline@graphene Aqueous Colloids for the Construction of Assembled Conductive Network in Rubber Matrix and Its Chemical Sensing Application. Compos. Sci. Technol. 2016;125:1–8. doi: 10.1016/j.compscitech.2016.01.016. DOI

Khalaf A.L., Mohamad F.S., Abdul Rahman N., Lim H.N., Paiman S., Yusof N.A., Mahdi M.A., Yaacob M.H. Room Temperature Ammonia Sensor Using Side-Polished Optical Fiber Coated with Graphene/Polyaniline Nanocomposite. Opt. Mater. Express. 2017;7:1858–1870. doi: 10.1364/OME.7.001858. DOI

Park H.J., Yoon J.H., Lee K.G., Choi B.G. Potentiometric Performance of Flexible pH Sensor Based on Polyaniline Nanofiber Arrays. Nano Converg. 2019;6:9. doi: 10.1186/s40580-019-0179-0. PubMed DOI PMC

Hong S.Y., Oh J.H., Park H., Yun J.Y., Jin S.W., Sun L., Zi G., Ha J.S. Polyurethane Foam Coated with a Multi-Walled Carbon Nanotube/Polyaniline Nanocomposite for a Skin-like Stretchable Array of Multi-Functional Sensors. NPG Asia Mater. 2017;9:e448. doi: 10.1038/am.2017.194. DOI

Komathi S., Gopalan A.I., Muthuchamy N., Lee K.P. Polyaniline Nanoflowers Grafted onto Nanodiamonds via a Soft Template-Guided Secondary Nucleation Process for High-Performance Glucose Sensing. RSC Adv. 2017;7:15342–15351. doi: 10.1039/C6RA24760A. DOI

Chinnathambi S., Euverink G.J.W. Polyaniline Functionalized Electrochemically Reduced Graphene Oxide Chemiresistive Sensor to Monitor the pH in Real Time during Microbial Fermentations. Sens. Actuators B Chem. 2018;264:38–44. doi: 10.1016/j.snb.2018.02.087. DOI

Humpolíček P., Radaszkiewicz K.A., Capáková Z., Pacherník J., Bober P., Kašpárková V., Rejmontová P., Lehocký M., Ponížil P., Stejskal J. Polyaniline Cryogels: Biocompatibility of Novel Conducting Macroporous Material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. PubMed DOI PMC

Zhuang X., Tian C., Luan F., Wu X., Chen L. One-Step Electrochemical Fabrication of a Nickel Oxide Nanoparticle/Polyaniline Nanowire/Graphene Oxide Hybrid on a Glassy Carbon Electrode for Use as a Non-Enzymatic Glucose Biosensor. RSC Adv. 2016;6:92541–92546. doi: 10.1039/C6RA14970G. DOI

Yu Y., Joshi P.C., Wu J., Hu A. Laser-Induced Carbon-Based Smart Flexible Sensor Array for Multiflavors Detection. ACS Appl. Mater. Interfaces. 2018;10:34005–34012. doi: 10.1021/acsami.8b12626. PubMed DOI

Tian Y., Qu K., Zeng X. Investigation into the Ring-Substituted Polyanilines and Their Application for the Detection and Adsorption of Sulfur Dioxide. Sens. Actuators B Chem. 2017;249:423–430. doi: 10.1016/j.snb.2017.04.057. PubMed DOI PMC

Hadi A.A., Shaipuzaman N.N., Aspar M.A.S.M., Salim M.R., Manap H. Advancements in Ammonia Gas Detection: A Comparative Study of Sensor Technologies. Int. J. Electr. Comput. Eng. 2024;14:5107–5116. doi: 10.11591/ijece.v14i5.pp5107-5116. DOI

Xu K., Zheng W. Fabrication of Graphene-Based Ammonia Sensors: A Review. Curr. Nanosci. 2024;20:578–598. doi: 10.2174/1573413719666230829142724. DOI

Singh R., Agrohiya S., Rawal I., Ohlan A., Dahiya S., Punia R., Maan A.S. Porous Polyaniline/Flower-like Hybrid Phase MoS2/Phosphorus-Doped Graphene Ternary Nanocomposite for Efficient Room Temperature Ammonia Sensors. Synth. Met. 2024;307:117676. doi: 10.1016/j.synthmet.2024.117676. DOI

Soudi M., Cencillo-Abad P., Patel J., Ghimire S., Dillon J., Biswas A., Mukhopadhyay K., Chanda D. Self-Assembled Plasmonic Structural Color Colorimetric Sensor for Smartphone-Based Point-Of-Care Ammonia Detection in Water. ACS Appl. Mater. Interfaces. 2024;16:45632–45639. doi: 10.1021/acsami.4c06615. PubMed DOI

Rosiers M., Falzone C., Martin J., Clarisse L., Van Damme M., Coheur P., Romain A.-C. Monitoring Atmospheric Ammonia with Satellite and On-Field Gas Sensor Array Measurement Techniques; Proceedings of the 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN); Grapevine, TX, USA. 12–15 May 2024; pp. 1–4.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...