Heterocycles in Medicinal Chemistry II
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky
PubMed
39459179
PubMed Central
PMC11510039
DOI
10.3390/molecules29204810
PII: molecules29204810
Knihovny.cz E-zdroje
Carbon has a unique position among the elements, due to the fact that its valence shell has four electrons and is therefore quadrivalent in the excited state [...].
Zobrazit více v PubMed
LibreTexts™ Chemsitry—Carbon-Why It Is Unique. [(accessed on 27 September 2024)]. Available online: https://chem.libretexts.org/Courses/Prince_Georges_Community_College/CHM_1020%3A_General_Chemistry_II_(Miller)/09%3A_Organic_Chemistry/9.02%3A_Carbon-_Why_It_Is_Unique.
Katritzky A.R., Denisko O.V. Heterocyclic Compound. Encyclopædia Britannica. [(accessed on 27 September 2024)]. Available online: https://www.britannica.com/science/heterocyclic-compound.
Ram V.J., Sethi A., Nath M., Pratap R. The Chemistry of Heterocycles. Elsevier; Amsterdam, The Netherlands: 2019.
Kabir E., Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Res. Chem. 2022;4:100606. doi: 10.1016/j.rechem.2022.100606. DOI
Qadir T., Amin A., Sharma P.K., Jeelani I., Abe H. A review on medicinally important heterocyclic compounds. Open J. Med. Chem. 2022;16:e187410452202280. doi: 10.2174/18741045-v16-e2202280. DOI
Al-Mulla A. A review: Biological importance of heterocyclic compounds. Der Pharma Chem. 2017;9:141–147.
Li M.M., Chen X., Deng Y., Lu J. Recent advances of N-heterocyclic carbenes in the applications of constructing carbo- and heterocyclic frameworks with potential biological activity. RSC Adv. 2021;11:38060–38078. doi: 10.1039/D1RA06155K. PubMed DOI PMC
Li X., Liu G., Zheng H., Sun K., Wan L., Cao J., Asif S., Cao Y., Si W., Wang F., et al. Recent advances on heteroatom-doped porous carbon—Based electrocatalysts for oxygen reduction reaction. Energies. 2023;16:128. doi: 10.3390/en16010128. DOI
Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Waldman A.J., Ng T.L., Wang P., Balskus E.P. Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem. Rev. 2017;117:5784–5863. doi: 10.1021/acs.chemrev.6b00621. PubMed DOI PMC
DrugBank—Indenes. [(accessed on 27 September 2024)]. Available online: https://go.drugbank.com/categories/DBCAT000931.
DrugBank—Benzimidazoles. [(accessed on 27 September 2024)]. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzimidazoles&button=&_gl=1*j3tvvg*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjAuMTcyNzcwMjEwNy4wLjAuMA.
DrugBank—Benzoxazoles. [(accessed on 27 September 2024)]. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzoxazoles&button=&_gl=1*okm6e9*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjEuMTcyNzcwMjExNy4wLjAuMA.
DrugBank—Benzothiazoles. [(accessed on 27 September 2024)]. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzothiazoles&button=&_gl=1*1hfxtqb*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjEuMTcyNzcwMjIyMS4wLjAuMA.
Mahajan N.D., Jain N. Heterocyclic compounds and their applications in the field of biology: A detailed study. Nat. Vol. Essent. Oil. 2021;8:13223–13229.
Nehra B., Mathew B., Chawla P.A. A medicinal chemist’s perspective towards structure activity relationship of heterocycle based anticancer agents. Curr. Top Med. Chem. 2022;22:493–528. doi: 10.2174/1568026622666220111142617. PubMed DOI
Karthikeyan S., Grishina M., Kandasamy S., Mangaiyarkarasi R., Ramamoorthi A., Chinnathambi S., Pandian G.N., Kennedy L.J. A review on medicinally important heterocyclic compounds and importance of biophysical approach of underlying the insight mechanism in biological environment. J. Biomol. Struct. Dyn. 2023;41:14599–14619. doi: 10.1080/07391102.2023.2187640. PubMed DOI
Meanwell N.A., Lolli M.L. Applications of Heterocycles in the Design of Drugs and Agricultural Products. Academic Press & Elsevier; Amsterdam, The Netherlands: 2021.
Pozharskii A.F., Soldatenkov A.T., Katritzky A.R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications. 2nd ed. J. Wiley & Sons; Chichster, UK: 2011.
Li Petri G., Holl R., Spanò V., Barreca M., Sardo I., Raimondi M.V. Emerging heterocycles as bioactive compounds. Front. Chem. 2023;11:1202192. doi: 10.3389/fchem.2023.1202192. PubMed DOI PMC
Majumdar K.C., Chattopadhyay S.K. Heterocycles in Natural Product Synthesis. Wiley-VCH; Weinheim, Germany: 2011.
Gao B., Yang B., Feng X., Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat. Prod. Rep. 2022;39:139–162. doi: 10.1039/D1NP00017A. PubMed DOI
Heravi M.M., Zadsirjana V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020;10:44247–44311. doi: 10.1039/D0RA09198G. PubMed DOI PMC
Rusu A., Moga I.-M., Uncu L., Hancu G. The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy. Pharmaceutics. 2023;15:2554. doi: 10.3390/pharmaceutics15112554. PubMed DOI PMC
Rotella D.P. Heterocycles in drug discovery: Properties and preparation. In: Meanwell N.A., Lolli M.L., editors. Advances in Heterocyclic Chemistry. Academic Press & Elsevier; Amsterdam, The Netherlands: 2021. pp. 149–183.
Pibiri I. Recent advances: Heterocycles in drugs and drug discovery. Int. J. Mol. Sci. 2024;25:9503. doi: 10.3390/ijms25179503. PubMed DOI PMC
Lamberth C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 2013;69:1106–11014. doi: 10.1002/ps.3615. PubMed DOI
Lamberth C., Dinges J. Bioactive Heterocyclic Compound Classes: Agrochemicals. Wiley-VCH; Weinheim, Germany: 2012.
Al-Harb E.A., Wafaa A.G. Nitrogen-containing heterocycles in agrochemicals. Agri. Res. Tech. Open Access J. 2018;16:555986. doi: 10.19080/ARTOAJ.2018.16.555986. DOI
Roche V.F., Zito W.S., Lemke T.L., Williams D.A. Foye’s Principles of Medicinal Chemistry. 8th ed. Wolters Kluwer; Alphen aan den Rijn, The Netherlands: 2019.
Schreiber S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science. 2000;287:1964–1969. doi: 10.1126/science.287.5460.1964. PubMed DOI
Burke M.D., Lalic G. Teaching target-oriented and diversity-oriented organic synthesis at Harvard University. Chem. Biol. 2002;9:535–541. doi: 10.1016/S1074-5521(02)00143-6. PubMed DOI
Quin L.D., Tyrell J.A. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals. J. Wiley and Sons; Hoboken, NJ, USA: 2010.
Majee S., Shilpa, Sarav M., Banik B.K., Ray D. Recent advances in the green synthesis of active N-heterocycles and their biological activities. Pharmaceuticals. 2023;16:873. doi: 10.3390/ph16060873. PubMed DOI PMC
Zeleke D., Damena T. Advance in green synthesis of pharmacological important heterocycles using multicomponent reactions and magnetic nanocatalysts (MNCs) Res. Chem. 2024;7:101283. doi: 10.1016/j.rechem.2023.101283. DOI
Hashmi S.Z., Bareth D., Dwivedi J., Kishorea D., Alvi P.A. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv. 2024;14:18192–18246. doi: 10.1039/D4RA02812K. PubMed DOI PMC
Singh K., Sharma S., Tyagi R., Sagar R. Recent progress in the synthesis of natural product inspired bioactive glycohybrids. Carbohydr. Res. 2023;534:108975. doi: 10.1016/j.carres.2023.108975. PubMed DOI
Wardecki D., Dolowy M., Bober-Majnusz K., Jampilek J. Comparative study of the lipophilicity of selected anti-androgenic and blood uric acid lowering compounds. Molecules. 2023;28:166. doi: 10.3390/molecules28010166. PubMed DOI PMC
Zhao T., Sun Y., Meng Y., Liu L., Dai J., Yan G., Pan X., Guan X., Song L., Lin R. Design, synthesis and antifungal activities of novel pyrazole analogues containing the aryl trifluoromethoxy group. Molecules. 2023;28:6279. doi: 10.3390/molecules28176279. PubMed DOI PMC
Rodriguez-Villar K., Yepez-Mulia L., Cortes-Gines M., Aguilera-Perdomo J.D., Quintana-Salazar E.A., Olascoaga Del Angel K.S., Cortes-Benitez F., Palacios-Espinosa J.F., Soria-Arteche O., Perez-Villanueva J. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-phenyl-2H-indazole derivatives. Molecules. 2021;26:2145. doi: 10.3390/molecules26082145. PubMed DOI PMC
Ahmad G., Khalid A., Qamar M.U., Rasool N., Saadullah M., Bilal M., Bajaber M.A., Obaidullah A.J., Alotaibi H.F., Alotaibi J.M. Antibacterial efficacy of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogues against extended-spectrum-β-lactamase producing clinical strain of Escherichia coli ST 131. Molecules. 2023;28:3118. doi: 10.3390/molecules28073118. PubMed DOI PMC
Bec A., Zlatic K., Banjanac M., Radovanovic V., Starcevic K., Kralj M., Hranjec M. Design, synthesis and biological activity of novel methoxy- and hydroxy-substituted N-benzimidazole-derived carboxamides. Molecules. 2024;29:2138. doi: 10.3390/molecules29092138. PubMed DOI PMC
Liew L.P., Shome A., Wong W.W., Hong C.R., Hicks K.O., Jamieson S.M.F., Hay M.P. Design, synthesis and anticancer evaluation of nitroimidazole radiosensitisers. Molecules. 2023;28:4457. doi: 10.3390/molecules28114457. PubMed DOI PMC
Ramirez D., Mejia-Gutierrez M., Insuasty B., Rinne S., Kiper A.K., Platzk M., Muller T., Decher N., Quiroga J., De-la-Torre P., et al. 5-(Indol-2-yl)pyrazolo [3,4-b]pyridines as a new family of TASK-3 Channel blockers: A pharmacophore-based regioselective synthesis. Molecules. 2021;26:3897. doi: 10.3390/molecules26133897. PubMed DOI PMC
Heise N.V., Heisig J., Meier K., Csuk R., Mueller T. F16 Hybrids derived from steviol or isosteviol are accumulated in the mitochondria of tumor cells and overcome drug resistance. Molecules. 2024;29:381. doi: 10.3390/molecules29020381. PubMed DOI PMC
Zolotareva D., Zazybin A., Dauletbakov A., Belyankova Y., Giner Parache B., Tursynbek S., Seilkhanov T., Kairullinova A. Morpholine, piperazine, and piperidine derivatives as antidiabetic agents. Molecules. 2024;29:3043. doi: 10.3390/molecules29133043. PubMed DOI PMC
Kim H.J., Jung H.J., Kim Y.E., Jeong D., Park H.S., Park H.S., Kang D., Park Y., Chun P., Chung H.Y., et al. Investigation of the efficacy of benzylidene-3-methyl-2-thioxothiazolidin-4-one analogs with antioxidant activities on the inhibition of mushroom and mammal tyrosinases. Molecules. 2024;29:2887. doi: 10.3390/molecules29122887. PubMed DOI PMC