Electroextraction of Large Volume Samples Using Paper Points Coupled With Hollow Fiber Membranes: Study of Parameters and Strategies to Enhance Analytical Performance
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO68081715
by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
88881.516313/2029-01
by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
465768/2014-8
by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
2014/50951-4
by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
RED-00120-23
by Czech Academy of Sciences, PROCAD Segurança Pública e Ciências Forenses, INCTAA/ CNPq/FAPESP, and Rede Mineira de Ciências Forenses.
PubMed
39470112
DOI
10.1002/elps.202400102
Knihovny.cz E-zdroje
- Klíčová slova
- concentration focusing, environmental analysis, green sample preparation, multiphase electroextraction,
- Publikační typ
- časopisecké články MeSH
Electroextraction (EE) encompasses a range of sample preparation methods whose effectiveness, selectivity, and efficiency are significantly influenced by the physical-chemical characteristics of analytes, samples, and instrumental conditions. This article explores, for the first time, various strategies aimed at enhancing the extraction efficiency of a recent approach of EE utilizing a paper point (PP) combined with a hollow fiber (HF) (abbreviated as PP-HF-EE) to extract various cationic and anionic model compounds from water samples. The study also explores, experimentally, the impact of agitation, organic filter composition, PP diameter, and PP brand on extraction performance, and proves that all these factors are quite important, especially when digital image analysis is utilized for determination. Furthermore, this work demonstrates the ease and feasibility of simultaneously extracting cations and anions using PP-HF-EE and proposes a straightforward method to enhance analyte concentration on the vertex of the PP through a base-to-vertex focusing. Lastly, it is demonstrated, using capillary electrophoresis coupled to a UV-Vis detector, that for PP-HF-EE, the extraction efficiency and pre-concentration factor are less dependent on other parameters when multiple PPs per sample are utilized, with signal enhancement values of up to 111 and 339 for nortriptyline and haloperidol, respectively. All the findings and strategies presented herein constitute significant contributions that can facilitate future research in method development, particularly in the utilization of PP-HF-EE and similar EE approaches.
Zobrazit více v PubMed
V. Pérez‐Fernández, R. L. Mainero, P. Tomai, S. Fanali, and A. Gentili, “Recent Advancements and Future Trends in Environmental Analysis: Sample Preparation, Liquid Chromatography and Mass Spectrometry,” Analytica Chimica Acta 983 (2017): 9–41.
N. Drouin, P. Kubáň, S. Rudaz, S. Pedersen‐Bjergaard, and J. Schappler, “Electromembrane Extraction: Overview of the Last Decade,” Trac Trends in Analytical Chemistry 113 (2019): 357–363.
F. A. Hansen, N. J. Petersen, J. P. Kutter, and S. Pedersen‐Bjergaard, “Electromembrane Extraction in Microfluidic Formats,” Journal of Separation Science 45 (2022): 246–257.
S. Pedersen‐Bjergaard and K. E. Rasmussen, “Electrokinetic Migration Across Artificial Liquid Membranes: New Concept for Rapid Sample Preparation of Biological Fluids,” Journal of Chromatography A 1109 (2006): 183–190.
Q. Shang, H. Mei, C. Huang, and X. Shen, “Fundamentals, Operations and Applications of Electromembrane Extraction: An Overview of Reviews,” Microchemical Journal 181 (2022): 107751.
L. V. Eie, T. K. Rye, F. Hansen, T. G. Halvorsen, and S. Pedersen‐Bjergaard, “Electromembrane Extraction of Peptides and Amino Acids—Status and Perspectives,” Bioanalysis 13 (2021): 277–289.
L. V. Eie, S. Pedersen‐Bjergaard, and F. A. Hansen, “Electromembrane Extraction of Polar Substances—Status and Perspectives,” Journal of Pharmaceutical and Biomedical Analysis 207 (2022): 114407.
J. Li, R. Zhu, X. Shen, and C. Huang, “Functional Materials and Chemicals in Electromembrane Extraction,” Trac Trends in Analytical Chemistry 150 (2022): 116574.
L. Shi, M. Chen, G. Zhao, et al., “Environmental Applications of Electromembrane Extraction: A Review,” Membranes 13 (2023): 705.
C. Román‐Hidalgo, L. Barreiros, M. Villar‐Navarro, G. López‐Pérez, M. J. Martín‐Valero, and M. A. Segundo, “Electromembrane Extraction Based on Biodegradable Materials: Biopolymers as Sustainable Alternatives to Plastics,” Trac Trends in Analytical Chemistry (2023): 162.
R. M. Orlando, C. C. Nascentes, B. G. Botelho, J. S. Moreira, K. A. Costa, and V. H. B. De Miranda, “Development and Evaluation of a 66‐Well Plate Using a Porous Sorbent in a Four‐Phase Extraction Assisted by Electric Field Approach,” Analytical Chemistry 91 (2019): 6471–6478.
V. S. Amador, J. S. Moreira, R. Augusti, R. M. Orlando, and E. Piccin, “Direct Coupling of Paper Spray Mass Spectrometry and Four‐Phase Electroextraction Sample Preparation,” Analyst 146 (2021): 1057–1064.
M. C. F. Avelar , C. C. Nascentes, and R. M. Orlando, “Electric Field‐Assisted Multiphase Extraction to Increase Selectivity and Sensitivity in Liquid Chromatography‐Mass Spectrometry and Paper Spray Mass Spectrometry,” Talanta 224 (2021): 121887.
D. V. M. Sousa, F. V. Pereira, V. H. B. De Miranda, and R. M. Orlando, “Multiphase Electroextraction as a Simple and Fast Sample Preparation Alternative for the Digital Image Determination of Doxorubicin in Saliva,” Talanta 255 (2023): 124242.
Brněnské vodárny a kanalizace, a.s, https://www.bvk.cz/pitna‐voda/kvalita‐vody, Accessed 10 May 2024.
R. M. Orlando, M. Dvořák, and P. Kubáň, “Electroextraction of Methylene Blue From Aqueous Environmental Samples Using Paper Points Coupled With Hollow Fiber Membranes,” Talanta 273 (2024): 125849.
S. Soares, G. M. Fernandes, and F. R. P. Rocha, “Smartphone‐Based Digital Images in Analytical Chemistry: Why, When, and How to Use,” Trac Trends in Analytical Chemistry 168 (2023): 117284.
L. P. S. Benedetti, V. B. Santos, T. A. Silva, E. Benedetti Filho, V. L. Martins, and O. Fatibello‐Filho, “A Digital Image‐Based Method Employing a Spot‐Test for Quantification of Ethanol in Drinks,” Analytical Methods 7 (2015): 4138–4144.
P. Didpinrum, W. Siriangkhawut, K. Ponhong, P. Chantiratikul, and K. Grudpan, “A Newly Designed Sticker‐Plastic Sheet Platform and Smartphone‐Based Digital Imaging for Protein Assay in Food Samples With Downscaling Kjeldahl Digestion,” RSC Advances 11 (2021): 36494–36501.
International Organization for Standardization, Dentistry— Endodontic Instruments—Part 1: General Requirements. ISO 3630–1, 3rd ed. (Geneva, Switzerland: ISO, 2019).
A. Gjelstad, T. M. Andersen, K. E. Rasmussen, and S. Pedersen‐Bjergaard, “Microextraction Across Supported Liquid Membranes Forced by pH Gradients and Electrical Fields,” Journal of Chromatography A 1157 (2007): 38–45.
L. Xu, P. C. Hauser, and H. K. Lee, “Electro Membrane Isolation of Nerve Agent Degradation Products Across a Supported Liquid Membrane Followed by Capillary Electrophoresis With Contactless Conductivity Detection,” Journal of Chromatography A 1214 (2008): 17–22.
M. Balchen, A. Gjelstad, K. E. Rasmussen, and S. Pedersen‐Bjergaard, “Electrokinetic Migration of Acidic Drugs Across a Supported Liquid Membrane,” Journal of Chromatography A 1152 (2007): 220–225.
S. Seidi, Y. Yamini, M. Rezazadeh, and A. Esrafili, “Low‐Voltage Electrically‐Enhanced Microextraction as a Novel Technique for Simultaneous Extraction of Acidic and Basic Drugs From Biological Fluids,” Journal of Chromatography A 1243 (2012): 6–13.
S. Asadi, H. Tabani, K. Khodaei, F. Asadian, and S. Nojavan, “Rotating Electrode in Electro Membrane Extraction: A New and Efficient Methodology to Increase Analyte Mass Transfer,” RSC Advances 6 (2016): 101869–101879.
E. Mohammadkhani, Y. Yamini, M. Rezazadeh, and S. Seidi, “Electromembrane Surrounded Solid Phase Microextraction Using Electrochemically Synthesized Nanostructured Polypyrrole Fiber,” Journal of Chromatography A 1443 (2016): 75–82.
A. Rahimi, S. Nojavan, and H. Tabani, “Inside Gel Electromembrane Extraction: A Novel Green Methodology for the Extraction of Morphine and Codeine From Human Biological Fluids,” Journal of Pharmaceutical and Biomedical Analysis 184 (2020): 113175.
A. Šlampová and P. Kubáň, “Two‐Phase Micro‐Electromembrane Extraction With a Floating Drop Free Liquid Membrane for the Determination of Basic Drugs in Complex Samples,” Talanta 206 (2020): 120255.
F. S. Skottvoll, F. A. Hansen, S. Harrison, et al., “Electromembrane Extraction and Mass Spectrometry for Liver Organoid Drug Metabolism Studies,” Analytical Chemistry 93 (2021): 3576–3585.
K. F. Seip, M. Faizi, C. Vergel, A. Gjelstad, and S. Pedersen‐Bjergaard, “Stability and Efficiency of Supported Liquid Membranes in Electromembrane Extraction—A Link to Solvent Properties,” Analytical and Bioanalytical Chemistry 406 (2014): 2151–2161.
R. O. Edwards and S. Bandyopadhyay, “Physical and Mechanical Properties of Endodontic Absorbent Paper Points,” Journal of Endodontics 7 (1981): 123–127.
J. Pumarola‐Suñé, L. Solá‐Vicens, J. Sentís‐Vilalta, C. Canalda‐Sahli, and E. Brau‐Aguadé, “Absorbency Properties of Different Brands of Standardized Endodontic Paper Points,” Journal of Endodontics 24 (1998): 796–798.
D. V. M. Sousa, F. V. Pereira, C. C. Nascentes, J. S. Moreira, V. H. M. Boratto, and R. M. Orlando, “Cellulose Cone Tip as a Sorbent Material for Multiphase Electrical Field‐Assisted Extraction of Cocaine From Saliva and Determination by LC‐MS/MS,” Talanta 208 (2020): 120353.
C. Basheer, J. Lee, S. Pedersen‐Bjergaard, K. E. Rasmussen, and H. K. Lee, “Simultaneous Extraction of Acidic and Basic Drugs at Neutral Sample pH: A Novel Electro‐Mediated Microextraction Approach,” Journal of Chromatography A 1217 (2010): 6661–6667.
Y. A. Asl, Y. Yamini, S. Seidi, and M. Rezazadeh, “Simultaneous Extraction of Acidic and Basic Drugs via On‐Chip Electromembrane Extraction,” Analytica Chimica Acta 937 (2016): 61–68.
E. Santigosa‐Murillo, S. Maspoch, M. Muñoz, and M. Ramos‐Payán, “An Efficient Microfluidic Device Based on Electromembrane Extraction for the Simultaneous Extraction of Acidic and Basic Drugs,” Analytica Chimica Acta 1160 (2021): 338448.
Q. Shang, H. Liu, H. Mei, C. Huang, and X. Shen, “Multi‐Extraction System With Identical Supported Semi‐liquid Membrane: Enhanced Stability for Coextraction of Acidic and Basic Drugs,” Talanta 246 (2022): 123485.
Y. A. Asl, Y. Yamini, S. Seidi, and H. Amanzadeh, “Dynamic Electromembrane Extraction: Automated Movement of Donor and Acceptor Phases to Improve Extraction Efficiency,” Journal of Chromatography A 1419 (2015): 10–18.
M. Baharfar, Y. Yamini, S. Seidi, and M. B. Arain, “Approach for Downscaling of Electromembrane Extraction as a Lab‐on‐a‐Chip Device Followed by Sensitive Red‐Green‐Blue Detection,” Analytical Chemistry 90 (2018): 8478–8486.
F. Zarghampour, Y. Yamini, M. Baharfar, G. Javadian, and M. Faraji, “On‐Chip Electromembrane Extraction Followed by Sensitive Digital Image‐Based Colorimetry for Determination of Trace Amounts of Cr(VI),” Analytical Methods 12 (2020): 483–490.
M. Alidoust, Y. Yamini, and M. Baharfar, “Microfluidic Paper‐Based Analytical Devices and Electromembrane Extraction; Hyphenation of Fields Towards Effective Analytical Platforms,” Analytica Chimica Acta 1216 (2022): 339987.
F. Zarghampour, Y. Yamini, E. Alipanahpour Dil, A. Shokrollahi, and G. Javadian, “A New Microfluidic‐Chip Device Followed by Sensitive Image Analysis of Smartphone for Simultaneous Determination of Dyes With Different Acidic–Basic Properties,” Talanta 254 (2023): 124168.
M. Fotouhia, S. Seidia, B. Nasihatkon, S. Solouki, and N. Rezaeia, “Simultaneous Analysis of Three Metal Ions on a Single Chip: Easy Clean‐up With Bio‐thin Film in Electromembrane Extraction and Quick Colorimetric Analysis With Progressive Web Application,” Journal of Environmental Chemical Engineering 12 (2024): 111763.