Evolution shapes and conserves genomic signatures in viruses
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
2015-05307
Vetenskapsrådet (Swedish Research Council)
2017/0009
Svenska Forskningsrådet Formas (Swedish Research Council Formas)
PubMed
39478059
PubMed Central
PMC11526014
DOI
10.1038/s42003-024-07098-1
PII: 10.1038/s42003-024-07098-1
Knihovny.cz E-resources
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Genome, Viral * MeSH
- Genomics methods MeSH
- Evolution, Molecular * MeSH
- Selection, Genetic MeSH
- Viruses * genetics MeSH
- Codon Usage MeSH
- Publication type
- Journal Article MeSH
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
See more in PubMed
Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends in Genet.11, 403–409 (1995). PubMed
Sandberg, R., Branden, C. I., Ernberg, I. & Coster, J. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. Gene311, 35–42 (2003). PubMed
Hooper, S. D. & Berg, O. G. Detection of genes with atypical nucleotide sequence in microbial genomes. J. Mol. Evol.54, 365–375 (2002). PubMed
Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science320, 1784–1787 (2008). PubMed PMC
Deschavanne, P. J., Giron, A., Vilain, J., Fagot, G. & Fertil, B. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol.16, 1391–1399 (1999). PubMed
Dalevi, D., Dubhashi, D. & Hermansson, M. Bayesian classifiers for detecting HGT using fixed and variable order Markov models of genomic signatures. Bioinformatics22, 517–522 (2006). PubMed
Norberg, P., Bergstrom, M., Jethava, V., Dubhashi, D. & Hermansson, M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun.2, 268 (2011). PubMed PMC
de la Fuente, R., Díaz-Villanueva, W., Arnau, V. & Moya, A. Genomic signature in evolutionary biology: a review. Biology12, 10.3390/biology12020322 (2023). PubMed PMC
Karlin, S. & Ladunga, I. Comparisons of eukaryotic genomic sequences. Proc. Natl. Acad. Sci. USA91, 12832–12836 (1994). PubMed PMC
Lobo, F. P. et al. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE4, e6282 (2009). PubMed PMC
Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev.40, 258–272 (2016). PubMed PMC
Buchan, J. R., Aucott, L. S. & Stansfield, I. tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res.34, 1015–1027 (2006). PubMed PMC
Le Nouen, C. et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc. Natl. Acad. Sci. USA111, 13169–13174 (2014). PubMed PMC
Mueller, S. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol.28, 723–726 (2010). PubMed PMC
Martrus, G., Nevot, M., Andres, C., Clotet, B. & Martinez, M. A. Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology10, 78 (2013). PubMed PMC
Kunec, D. & Osterrieder, N. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep.14, 55–67 (2016). PubMed
Gustafsson, J., Norberg, P., Qvick-Wester, J. R. & Schliep, A. Fast parallel construction of variable-length Markov chains. BMC Bioinform.22, 1–23 (2021). PubMed PMC
Bühlmann, P. & Wyner, A. J. Variable length Markov chains. Ann. Stat.27, 480–513 (1999).
Alsop, E. B. & Raymond, J. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification. PLoS ONE8, e67337 (2013). PubMed PMC
Deschavanne, P., Giron, A., Vilain, J., Dufraigne, C., & Fertil, B. Genomic signature is preserved in short DNA fragments. In Proc. IEEE International Symposium on Bio-Informatics and Biomedical Engineering 161–167. 10.1109/BIBE.2000.889603 (2000).
Chapus, C. et al. Exploration of phylogenetic data using a global sequence analysis method. BMC Evol. Biol.5, 63 (2005). PubMed PMC
Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res.34, 564–574 (2006). PubMed PMC
Sharp, P. M. & Li, W. H. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res.15, 1281–1295 (1987). PubMed PMC
Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev.12, 32–42 (2011). PubMed PMC
Sharp, P. M. et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res.16, 8207–8211 (1988). PubMed PMC
Vieira, V. C. & Soares, M. A. The role of cytidine deaminases on innate immune responses against human viral infections. Biomed. Res. Int.2013, 683095 (2013). PubMed PMC
Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature550, 124–127 (2017). PubMed PMC
Ringlander, J. et al. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2. Proc. Natl. Acad. Sci. USA119, 10.1073/pnas.2112663119 (2022). PubMed PMC
Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology411, 180–193 (2011). PubMed PMC
Powdrill, M. H. et al. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl. Acad. Sci. USA108, 20509–20513 (2011). PubMed PMC
Hayman, D. T. S. & Knox, M. A. Estimating the age of the subfamily Orthocoronavirinae using host divergence times as calibration ages at two internal nodes. Virology563, 20–27 (2021). PubMed PMC
Wertheim, J. O., Chu, D. K., Peiris, J. S., Kosakovsky Pond, S. L. & Poon, L. L. A case for the ancient origin of coronaviruses. J. Virol.87, 7039–7045 (2013). PubMed PMC
Zhou, Z., Qiu, Y. & Ge, X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Anim. Dis.1, 5 (2021). PubMed PMC
Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol.2, 17112 (2017). PubMed PMC
Strand, M. R. & Burke, G. R. Polydnaviruses: from discovery to current insights. Virology479, 393–402 (2015). PubMed PMC
Herniou, E. A. et al. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci.368, 20130051 (2013). PubMed PMC
Fan, R. L. et al. Generation of live attenuated influenza virus by using codon usage bias. J. Virol.89, 10762–10773 (2015). PubMed PMC
Kypr, J. & Mrazek, J. Unusual codon usage of HIV. Nature327, 20 (1987). PubMed
van Hemert, F., van der Kuyl, A. C. & Berkhout, B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. J. Gen. Virol.97, 2608–2619 (2016). PubMed
Zhou, T., Gu, W., Ma, J., Sun, X. & Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems81, 77–86 (2005). PubMed
Simon, D., Cristina, J. & Musto, H. Nucleotide composition and codon usage across viruses and their respective hosts. Front. Microbiol.12, 646300 (2021). PubMed PMC
Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science343, 1243727 (2014). PubMed PMC
McGeoch, D. J., Dolan, A. & Ralph, A. C. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol.74, 10401–10406 (2000). PubMed PMC
He, T. et al. Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virol. J.17, 68 (2020). PubMed PMC
Hennig, T., Djakovic, L., Dölken, L. & Whisnant, A. W. A review of the multipronged attack of herpes simplex virus 1 on the host transcriptional machinery. Viruses13, 10.3390/v13091836 (2021). PubMed PMC
Dolan, P. T., Whitfield, Z. J. & Andino, R. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe23, 435–446 (2018). PubMed PMC
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol.20, 257 (2019). PubMed PMC
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res.26, 1721–1729 (2016). PubMed PMC
Morgulis, A., Gertz, E. M., Schaffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol.13, 1028–1040 (2006). PubMed
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses8, 66 (2016). PubMed PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC
Ron, D., Singer, Y. & Tishby, N. The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn.25, 117–149 (1997).
Schwarz, G. Estimating the dimension of a model. Ann. Stat.6, 461–464 (1978).
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425 (1987). PubMed
Talevich, E., Invergo, B. M., Cock, P. J. & Chapman, B. A. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinform.13, 209 (2012). PubMed PMC
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol.33, 1635–1638 (2016). PubMed PMC