• This record comes from PubMed

Evolution shapes and conserves genomic signatures in viruses

. 2024 Oct 30 ; 7 (1) : 1412. [epub] 20241030

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
2015-05307 Vetenskapsrådet (Swedish Research Council)
2017/0009 Svenska Forskningsrådet Formas (Swedish Research Council Formas)

Links

PubMed 39478059
PubMed Central PMC11526014
DOI 10.1038/s42003-024-07098-1
PII: 10.1038/s42003-024-07098-1
Knihovny.cz E-resources

The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.

See more in PubMed

Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends in Genet.11, 403–409 (1995). PubMed

Sandberg, R., Branden, C. I., Ernberg, I. & Coster, J. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. Gene311, 35–42 (2003). PubMed

Hooper, S. D. & Berg, O. G. Detection of genes with atypical nucleotide sequence in microbial genomes. J. Mol. Evol.54, 365–375 (2002). PubMed

Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science320, 1784–1787 (2008). PubMed PMC

Deschavanne, P. J., Giron, A., Vilain, J., Fagot, G. & Fertil, B. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol.16, 1391–1399 (1999). PubMed

Dalevi, D., Dubhashi, D. & Hermansson, M. Bayesian classifiers for detecting HGT using fixed and variable order Markov models of genomic signatures. Bioinformatics22, 517–522 (2006). PubMed

Norberg, P., Bergstrom, M., Jethava, V., Dubhashi, D. & Hermansson, M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun.2, 268 (2011). PubMed PMC

de la Fuente, R., Díaz-Villanueva, W., Arnau, V. & Moya, A. Genomic signature in evolutionary biology: a review. Biology12, 10.3390/biology12020322 (2023). PubMed PMC

Karlin, S. & Ladunga, I. Comparisons of eukaryotic genomic sequences. Proc. Natl. Acad. Sci. USA91, 12832–12836 (1994). PubMed PMC

Lobo, F. P. et al. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE4, e6282 (2009). PubMed PMC

Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev.40, 258–272 (2016). PubMed PMC

Buchan, J. R., Aucott, L. S. & Stansfield, I. tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res.34, 1015–1027 (2006). PubMed PMC

Le Nouen, C. et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc. Natl. Acad. Sci. USA111, 13169–13174 (2014). PubMed PMC

Mueller, S. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol.28, 723–726 (2010). PubMed PMC

Martrus, G., Nevot, M., Andres, C., Clotet, B. & Martinez, M. A. Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology10, 78 (2013). PubMed PMC

Kunec, D. & Osterrieder, N. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep.14, 55–67 (2016). PubMed

Gustafsson, J., Norberg, P., Qvick-Wester, J. R. & Schliep, A. Fast parallel construction of variable-length Markov chains. BMC Bioinform.22, 1–23 (2021). PubMed PMC

Bühlmann, P. & Wyner, A. J. Variable length Markov chains. Ann. Stat.27, 480–513 (1999).

Alsop, E. B. & Raymond, J. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification. PLoS ONE8, e67337 (2013). PubMed PMC

Deschavanne, P., Giron, A., Vilain, J., Dufraigne, C., & Fertil, B. Genomic signature is preserved in short DNA fragments. In Proc. IEEE International Symposium on Bio-Informatics and Biomedical Engineering 161–167. 10.1109/BIBE.2000.889603 (2000).

Chapus, C. et al. Exploration of phylogenetic data using a global sequence analysis method. BMC Evol. Biol.5, 63 (2005). PubMed PMC

Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res.34, 564–574 (2006). PubMed PMC

Sharp, P. M. & Li, W. H. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res.15, 1281–1295 (1987). PubMed PMC

Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev.12, 32–42 (2011). PubMed PMC

Sharp, P. M. et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res.16, 8207–8211 (1988). PubMed PMC

Vieira, V. C. & Soares, M. A. The role of cytidine deaminases on innate immune responses against human viral infections. Biomed. Res. Int.2013, 683095 (2013). PubMed PMC

Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature550, 124–127 (2017). PubMed PMC

Ringlander, J. et al. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2. Proc. Natl. Acad. Sci. USA119, 10.1073/pnas.2112663119 (2022). PubMed PMC

Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology411, 180–193 (2011). PubMed PMC

Powdrill, M. H. et al. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl. Acad. Sci. USA108, 20509–20513 (2011). PubMed PMC

Hayman, D. T. S. & Knox, M. A. Estimating the age of the subfamily Orthocoronavirinae using host divergence times as calibration ages at two internal nodes. Virology563, 20–27 (2021). PubMed PMC

Wertheim, J. O., Chu, D. K., Peiris, J. S., Kosakovsky Pond, S. L. & Poon, L. L. A case for the ancient origin of coronaviruses. J. Virol.87, 7039–7045 (2013). PubMed PMC

Zhou, Z., Qiu, Y. & Ge, X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Anim. Dis.1, 5 (2021). PubMed PMC

Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol.2, 17112 (2017). PubMed PMC

Strand, M. R. & Burke, G. R. Polydnaviruses: from discovery to current insights. Virology479, 393–402 (2015). PubMed PMC

Herniou, E. A. et al. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci.368, 20130051 (2013). PubMed PMC

Fan, R. L. et al. Generation of live attenuated influenza virus by using codon usage bias. J. Virol.89, 10762–10773 (2015). PubMed PMC

Kypr, J. & Mrazek, J. Unusual codon usage of HIV. Nature327, 20 (1987). PubMed

van Hemert, F., van der Kuyl, A. C. & Berkhout, B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. J. Gen. Virol.97, 2608–2619 (2016). PubMed

Zhou, T., Gu, W., Ma, J., Sun, X. & Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems81, 77–86 (2005). PubMed

Simon, D., Cristina, J. & Musto, H. Nucleotide composition and codon usage across viruses and their respective hosts. Front. Microbiol.12, 646300 (2021). PubMed PMC

Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science343, 1243727 (2014). PubMed PMC

McGeoch, D. J., Dolan, A. & Ralph, A. C. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol.74, 10401–10406 (2000). PubMed PMC

He, T. et al. Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virol. J.17, 68 (2020). PubMed PMC

Hennig, T., Djakovic, L., Dölken, L. & Whisnant, A. W. A review of the multipronged attack of herpes simplex virus 1 on the host transcriptional machinery. Viruses13, 10.3390/v13091836 (2021). PubMed PMC

Dolan, P. T., Whitfield, Z. J. & Andino, R. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe23, 435–446 (2018). PubMed PMC

Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol.20, 257 (2019). PubMed PMC

Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res.26, 1721–1729 (2016). PubMed PMC

Morgulis, A., Gertz, E. M., Schaffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol.13, 1028–1040 (2006). PubMed

Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses8, 66 (2016). PubMed PMC

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC

Ron, D., Singer, Y. & Tishby, N. The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn.25, 117–149 (1997).

Schwarz, G. Estimating the dimension of a model. Ann. Stat.6, 461–464 (1978).

Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425 (1987). PubMed

Talevich, E., Invergo, B. M., Cock, P. J. & Chapman, B. A. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinform.13, 209 (2012). PubMed PMC

Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol.33, 1635–1638 (2016). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...