Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média
PubMed
29286438
PubMed Central
PMC5755477
DOI
10.3791/55303
Knihovny.cz E-zdroje
- MeSH
- fonace MeSH
- hlasové řasy anatomie a histologie fyziologie MeSH
- larynx anatomie a histologie fyziologie MeSH
- lidé MeSH
- vibrace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
The voice of humans and most non-human mammals is generated in the larynx through self-sustaining oscillation of the vocal folds. Direct visual documentation of vocal fold vibration is challenging, particularly in non-human mammals. As an alternative, excised larynx experiments provide the opportunity to investigate vocal fold vibration under controlled physiological and physical conditions. However, the use of a full larynx merely provides a top view of the vocal folds, excluding crucial portions of the oscillating structures from observation during their interaction with aerodynamic forces. This limitation can be overcome by utilizing a hemi-larynx setup where one half of the larynx is mid-sagittally removed, providing both a superior and a lateral view of the remaining vocal fold during self-sustained oscillation. Here, a step-by-step guide for the anatomical preparation of hemi-laryngeal structures and their mounting on the laboratory bench is given. Exemplary phonation of the hemi-larynx preparation is documented with high-speed video data captured by two synchronized cameras (superior and lateral views), showing three-dimensional vocal fold motion and corresponding time-varying contact area. The documentation of the hemi-larynx setup in this publication will facilitate application and reliable repeatability in experimental research, providing voice scientists with the potential to better understand the biomechanics of voice production.
Laboratory of Bio Acoustics Dept of Cognitive Biology University of Vienna
Voice Research Lab Department of Biophysics Faculty of Science Palacky University Olomouc
Zobrazit více v PubMed
Story BH. An overview of the physiology, physics and modeling of the sound source for vowels. Acoust Sci Technol. 2002;23(4):195–206.
Titze IR. Principles of voice production (second printing) Iowa City, IA: National Center for Voice and Speech; 2000.
Cooper DS. Ch. 95. In: Cummings CW, Fredrickson JM, Harker LA, Schuller DE, Krause CJ, editors. Otolaryngology - head and neck surgery. Vol. 3. St. Louis and Toronto: C. V. Mosby; 1986. pp. 1728–1737.
Titze IR. In: The myoelastic aerodynamic theory of phonation. Titze IR, editor. Denver CO and Iowa City IA: National Center for Voice and Speech; 2006. pp. 1–62.
Baer T. Investigation of phonation using excised larynxes (Doctoral dissertation) Cambridge, Mass: Massachusetts Institute of Technology; 1975.
Bless DM, Patel RR, Connor N. Ch. 11. In: Fried MP, Ferlito A, editors. The Larynx. Third Edition. I. San Diego, CA: Plural Publishing; 2009. pp. 181–210.
Berke GS, et al. Laryngeal modeling: theoretical, in vitro, in vivo. Laryngoscope. 1987;97:871–881. PubMed
Scherer RC, Titze IR, Curtis JF. Pressure-flow relationships in two models of the larynx having rectangular glottal shapes. J Acoust Soc Am. 1983;73(2):668–676. PubMed
Sidlof P, et al. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J Biomech. 2008;41(5):985–995. PubMed
Scherer RC, Torkaman S, Kuehn DP, Afjeh AA. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape. J Acoust Soc Am. 2010;128(2):828–838. PubMed PMC
Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am. 1988;83(4):1536–1552. PubMed
Horacek J, Svec JG. Ch. 2. In: Paidoussis MP, editor. Proceedings of the 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, Flow Induced Vibration and Noise (IMECE2002), Vol.3 ASME Int. Mechanical Engineering Congress, 17-22 November 2002, New Orleans, Louisiana, USA (CD-ROM).; New Orleans, Louisiana, USA. 2002. pp. 1043–1054.
Vilkman E, Alku P, Laukkanen AM. Vocal-fold collision mass as a differentiator between registers in the low-pitch range. J Voice. 1995;9(1):66–73. PubMed
Herbst CT, Svec JG. Adjustment of glottal configurations in singing. J Singing. 2014;70(3):301–308.
Hiroto I. Vibration of vocal cords: an ultra high-speed cinematographic study(Film) Kurume, Japan: Department of otolaryngology, Kurume University; 1968.
Jiang JJ, Titze IR. A methodological study of hemilaryngeal phonation. Laryngoscope. 1993;103(8):872–882. PubMed
Scherer RC, Druker DG, Titze IR. In: Vocal physiology: voice production, mechanisms and functions. Fujimura O, editor. New York: Raven Press; 1988. pp. 279–291.
Jiang JJ, Titze IR. Measurement of vocal fold intraglottal pressure and impact stress. J Voice. 1994;8(2):132–144. PubMed
Alipour F, Scherer RC. Dynamic glottal pressures in an excised hemilarynx model. J Voice. 2000;14(4):443–454. PubMed
Berry DA, Montequin DW, Tayama N. High-speed digital imaging of the medial surface of the vocal folds. J Acoust Soc Am. 2001;110(5 Pt 1):2539–2547. PubMed
Döllinger M, Tayama N, Berry DA. Empirical eigenfunctions and medial surface dynamics of a human vocal fold. Methods Inf Med. 2005;44(3):384–391. PubMed
Döllinger M, Berry DA, Berke GS. Medial surface dynamics of an in vivo canine vocal fold during phonation. J Acoust Soc Am. 2005;117(5):3174–3183. PubMed
Döllinger M, Berry DA, Kniesburges S. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments. J Acoust Soc Am. 2016;139(5):2372–2385. PubMed PMC
Durham PL, Scherer RC, Druker DG, Titze IR. Development of excised larynx procedures for studying mechanisms of phonation. Technical report. Voice Acoustics and Biomechanics Laboratory, Department of Speech Pathology and Audiology, The University of Iowa; 1987.
Chan RW, Titze IR. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann Biomed Eng. 2003;31(4):482–491. PubMed
Berg van den JW, Tan TS. Results of experiments with human larynxes. Practica Oto-Rhino-Laryngologica. 1959;21:425–450. PubMed
Hampala V, Garcia M, Svec JG, Scherer RC, Herbst CT. Relationship between the electroglottographic signal and vocal fold contact area. J Voice. 2016;30(2):161–171. PubMed
Herbst CT, et al. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. J Exp Biol. 2014;217(6):955–963. PubMed
Zemlin WR. Speech and hearing science: Anatomy & physiology. 3. New Jersey: Prentice Hall; 1988.
Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Döllinger M. Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med. Image Anal. 2007;11(4):400–413. PubMed
Wittenberg T, Moser M, Tigges M, Eysholdt U. Recording, processing, and analysis of digital high-speed sequences in glottography. Mach Vis Appl. 1995;8(6):399–404.
Larsson H, Hertegard S, Lindestad PA, Hammarberg B. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report. Laryngoscope. 2000;110(12):2117–2122. PubMed
Wittenberg T, Tigges M, Mergell P, Eysholdt U. Functional imaging of vocal fold vibration: digital multislice high-speed kymography. J Voice. 2000;14(3):422–442. PubMed
Deliyski D, Petrushev P. In: AQL 2003 Hamburg: Proceeding Papers for the Conference Advances in Quantitative Laryngology, Voice and Speech Research. (CD ROM) Schade G, Müller F, Wittenberg T, Hess M, editors. Stuttgart, Germany: IRB Verlag; 2003. pp. 1–16.
Svec JG, Schutte HK. Kymographic imaging of laryngeal vibrations. Curr Opin Otolaryngol Head Neck Surg. 2012;20(6):458–465. PubMed
Doellinger M, Berry DA. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. J Voice. 2006;20(3):401–413. PubMed
Kusuyama T, Fukuda H, Shiotani A, Nakagawa H, Kanzaki J. Analysis of vocal fold vibration by x-ray stroboscopy with multiple markers. Otolaryngol Head Neck Surg. 2001;124(3):317–322. PubMed
Fabre P. Un procédé électrique percuntané d'inscription de l'accolement glottique au cours de la phonation: glottographie de haute fréquence; premiers résultats [A non-invasive electric method for measuring glottal closure during phonation: High frequency glottography: first results] Bull. Acad. Nat. Med. 1957;141:66–69. PubMed
Baken RJ. Electroglottography. J Voice. 1992;6(2):98–110.
Baer T. In: Vocal Fold Physiology. Stevens KN, Hirano M, editors. Tokyo: University of Tokyo Press; 1981. pp. 119–133.
Pelorson X, Hirschberg A, van Hassel RR, Wijnands APJ, Auregan Y. Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J Acoust Soc Am. 1994;96(6):3416–3431.
Alipour F, Scherer RC. Flow separation in a computational oscillating vocal fold model. J Acoust Soc Am. 2004;116(3):1710–1719. PubMed
Zhang Z. Influence of flow separation location on phonation onset. J Acoust Soc Am. 2008;124(3):1689–1694. PubMed PMC
Kaburagi T, Tanabe Y. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction. J Acoust Soc Am. 2009;125(1):391–404. PubMed
Sidlof P, Doaré O, Cadot O, Chaigne A. Measurement of flow separation in a human vocal folds model. Exp Fluids. 2011;51(1):123–136.
Smith SL, Thomson SL. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model. J Acoust Soc Am. 2012;131(5):4062–4075. PubMed PMC
Khosla S, Oren L, Ying J, Gutmark E. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges. Laryngoscope. 2014;124:S1–S13. PubMed
Brücker C, Kirmse C, Triep M. Feedback of the glottal jet flow with supraglottal wall oscillations. Acta Acustica United With Acustica. 2016;102(2):240–243.
Herbst CT, Fitch WT, Lohscheller J, Svec JG. In: AQL 2013, Proceedings of the 10th International Conference on Advances in Quantitative Laryngology, Voice and Speech Research. Deliyski DD, editor. Cincinnati, Ohio, USA: AQL Press; 2013. pp. 75–76.
Berke GS, Gerratt BR. Laryngeal biomechanics: an overview of mucosal wave mechanics. J Voice. 1993;7(2):123–128. PubMed
Boessenecker A, Berry DA, Lohscheller J, Eysholdt U, Doellinger M. Mucosal wave properties of a human vocal fold. Acta Acustica United With Acustica. 2007;93(5):815–823.
Hirano M. Clinical examination of voice. Vol. 5. Wien, Austria: Springer-Verlag; 1981.
Jing B, Tang S, Wu L, Wang S, Wan M. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography. Ultrasound in Med BIol. 2016;42(12):2812–2825. PubMed
Herbst CT. Ch. 6. In: Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication. Switzerland: Springer International Publishing; 2016. pp. 159–189.