Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33420107
PubMed Central
PMC7794390
DOI
10.1038/s41598-020-79265-3
PII: 10.1038/s41598-020-79265-3
Knihovny.cz E-resources
- MeSH
- Speech Acoustics MeSH
- Acoustics MeSH
- Models, Biological MeSH
- Phonation physiology MeSH
- Glottis physiology MeSH
- Voice physiology MeSH
- Larynx physiology MeSH
- Humans MeSH
- Models, Animal MeSH
- In Vitro Techniques MeSH
- Pressure MeSH
- Deer MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Excised larynges serve as natural models for studying behavior of the voice source. Acoustic resonances inside the air-supplying tubes below the larynx (i.e., subglottal space), however, interact with the vibratory behavior of the larynges and obscure their inherent vibration properties. Here, we explore a newly designed anechoic subglottal space which allows removing its acoustic resonances. We performed excised larynx experiments using both anechoic and resonant subglottal spaces in order to analyze and compare, for the very first time, the corresponding subglottal pressures, electroglottographic and radiated acoustic waveforms. In contrast to the resonant conditions, the anechoic subglottal pressure waveforms showed negligible oscillations during the vocal fold contact phase, as expected. When inverted, these waveforms closely matched the inverse filtered radiated sound waveforms. Subglottal resonances modified also the radiated sound pressures (Level 1 interactions). Furthermore, they changed the fundamental frequency (fo) of the vocal fold oscillations and offset phonation threshold pressures (Level 2 interactions), even for subglottal resonance frequencies 4-10 times higher than fo. The obtained data offer the basis for better understanding the inherent vibratory properties of the vocal folds, for studying the impact of structure-acoustic interactions on voice, and for validation of computational models of voice production.
See more in PubMed
Fant, G. M. Acoustic theory of speech production. (Mouton, 1960).
Van Den Berg J. Myoelastic-aerodynamic theory of voice production. J. Speech Lang. Hear. Res. 1958;1:227–244. doi: 10.1044/jshr.0103.227. PubMed DOI
Titze IR. Comments on the myoelastic-aerodynamic theory of phonation. J. Speech Lang. Hear. Res. 1980;23:495–510. doi: 10.1044/jshr.2303.495. PubMed DOI
Titze IR. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 1988;83:1536–1552. doi: 10.1121/1.395910. PubMed DOI
Titze, I. R. The Myoelastic Aerodynamic Theory of Phonation. (National Center for Voice and Speech, 2006). PubMed
Titze, I. R., Baken, R. J. & Herzel, H. Evidence of chaos in vocal fold vibration. in Vocal Fold Physiology, Frontiers in Basic Science 143–188 (edited by I. R. Titze (Singular Publishing Group, San Diego), 1993).
Baken, R. Between organization and chaos: a different view of the voice. In Producing speech: Contemporary issues for Katherine Safford Harris (ed Bell-Berti, F. & Raphael, L. J.) 233–245 (1995).
Herzel, H., Berry, D., Titze, I. & Steinecke, I. Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling. Chaos Interdiscip. J. Nonlinear Sci.5, 30–34 (1995). PubMed
Titze IR. Nonlinear source-filter coupling in phonation: theory. J. Acoust. Soc. Am. 2008;123:2733–2749. doi: 10.1121/1.2832337. PubMed DOI PMC
Weiss, D. Zur Frage der Registerbruchstellen. Die Wirkung vorgeschalteter Resonanzröhren auf die Stimme. [On the question of register breaks. The effect of upstream resonance tubes on the voice]. Z Hals-, Nas-u Ohrenheilk70, 353–358 (1932).
Titze IR, Riede T, Popolo P. Nonlinear source–filter coupling in phonation: Vocal exercises. J. Acoust. Soc. Am. 2008;123:1902–1915. doi: 10.1121/1.2832339. PubMed DOI PMC
Wade L, Hanna N, Smith J, Wolfe J. The role of vocal tract and subglottal resonances in producing vocal instabilities. J. Acoust. Soc. Am. 2017;141:1546. doi: 10.1121/1.4976954. PubMed DOI
Zañartu M, Mehta DD, Ho JC, Wodicka GR, Hillman RE. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: a case study. J. Acoust. Soc. Am. 2011;129:326–339. doi: 10.1121/1.3514536. PubMed DOI PMC
Tokuda IT. Non-linear dynamics in mammalian voice production. Anthropol. Sci. 2018;126:35–41. doi: 10.1537/ase.171130. DOI
Murtola T, Aalto A, Malinen J, Aalto D, Vainio M. Modal locking between vocal fold oscillations and vocal tract acoustics. Acta Acust. united Ac. 2018;104:323–337. doi: 10.3813/AAA.919175. DOI
Mergell P, Herzel H. Modelling biphonation—the role of the vocal tract. Speech Commun. 1997;22:141–154. doi: 10.1016/S0167-6393(97)00016-2. DOI
Hatzikirou H, Fitch W, Herzel H. Voice instabilities due to source-tract interactions. Acta Acust. united Ac. 2006;92:468–475.
Austin SF, Titze IR. The effect of subglottal resonance upon vocal fold vibration. J. Voice. 1997;11:391–402. doi: 10.1016/S0892-1997(97)80034-3. PubMed DOI
Zhang Z, Neubauer J, Berry DA. The influence of subglottal acoustics on laboratory models of phonation. J. Acoust. Soc. Am. 2006;120:1558–1569. doi: 10.1121/1.2225682. PubMed DOI
Zhang Z, Neubauer J, Berry DA. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model. J. Sound Vib. 2009;322:299–313. doi: 10.1016/j.jsv.2008.11.009. PubMed DOI PMC
Lucero JC, Lourenço KG, Hermant N, Van Hirtum A, Pelorson X. Effect of source–tract acoustical coupling on the oscillation onset of the vocal folds. J. Acoust. Soc. Am. 2012;132:403–411. doi: 10.1121/1.4728170. PubMed DOI
Lehoux, S., Hampala, V. & Švec, J. G. Development and Use of an Anechoic Subglottal Tract for Excised Larynx Experiments. in Models and Analysis of Vocal Emissions for Biomedical Applications - 11th International Workshop, MAVEBA 2019. (ed Claudia Manfredi) 209–212 (Firenze University Press, 2019).
Hampala, V., Švec, J., Schovánek, D. & Mandát, D. Utility Model No. 25585: Subglottal tract model (In Czech). Czech republic patent (2013).
Baken RJ. Electroglottography. J. Voice. 1992;6:98–110. doi: 10.1016/S0892-1997(05)80123-7. DOI
Hampala V, Garcia M, Švec JG, Scherer RC, Herbst CT. Relationship between the electroglottographic signal and vocal fold contact area. J. Voice. 2016;30:161–171. doi: 10.1016/j.jvoice.2015.03.018. PubMed DOI
Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. The Acoustic Wave Equation and Simple Solutions. in Fundamentals of Acoustics 113–148 (John Wiley & Sons, Inc. New York, 2000).
Sondhi MM. Measurement of the glottal waveform. J. Acoust. Soc. Am. 1975;57:228–232. doi: 10.1121/1.380429. PubMed DOI
Miller RL. Nature of the vocal cord wave. J. Acoust. Soc. Am. 1959;31:667–677. doi: 10.1121/1.1907771. DOI
Murtola T, Alku P, Malinen J, Geneid A. Parameterization of a computational physical model for glottal flow using inverse filtering and high-speed videoendoscopy. Speech Commun. 2018;96:67–80. doi: 10.1016/j.specom.2017.11.007. DOI
Rothenberg M. A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. J. Acoust. Soc. Am. 1973;53:1632–1645. doi: 10.1121/1.1913513. PubMed DOI
Sundberg J. Flow glottogram and subglottal pressure relationship in singers and untrained voices. J. Voice. 2018;32:23–31. doi: 10.1016/j.jvoice.2017.03.024. PubMed DOI
Wolfe J, Chu D, Chen J-M, Smith J. An experimentally measured source-filter model: glottal flow, vocal tract gain and output sound from a physical model. Acoust. Aust. 2016;44:187–191. doi: 10.1007/s40857-016-0046-7. DOI
Granqvist, S. Sopran sound editor, available from http://www.tolvan.com/index.php?page=/main/home.php (last accessed 02.06.2020).
Cranen B, Boves L. Pressure measurements during speech production using semiconductor miniature pressure transducers: Impact on models for speech production. J. Acoust. Soc. Am. 1985;77:1543–1551. doi: 10.1121/1.391997. PubMed DOI
Miller, D. & Schutte, H. Characteristic patterns of sub-and supraglottal pressure variations within the glottal cycle. In Transcr. XIIIth Symp. Care Prof. Voice. 70–75 (1985).
Schutte H, Miller D. Resonanzspiele der Gesangsstimme in ihren Beziehungen zu supra-und subglottalen Druckverlaufen: Konsequenzen für die Stimmbildungstheorie. [Play of Resonances in the Singing Voice in the Supra- and Subglottal Pressure Changes: Consequences for the Theory of Voice Production]. Folia Phoniatr. Logo. 1988;40:65–73. doi: 10.1159/000265886. PubMed DOI
Sundberg J, Scherer R, Hess M, Müller F, Granqvist S. Subglottal pressure oscillations accompanying phonation. J. Voice. 2013;27:411–421. doi: 10.1016/j.jvoice.2013.03.006. PubMed DOI
Lucero JC. Subcritical hopf bifurcation at phonation onset. J. Sound Vib. 1998;218:344–349. doi: 10.1006/jsvi.1998.1790. DOI
Lucero JC. Oscillation hysteresis in a two-mass model of the vocal folds. J. Sound Vib. 2005;282:1247–1254. doi: 10.1016/j.jsv.2004.05.008. DOI
Titze IR, Schmidt SS, Titze MR. Phonation threshold pressure in a physical model of the vocal fold mucosa. J. Acoust. Soc. Am. 1995;97:3080–3084. doi: 10.1121/1.411870. PubMed DOI
Berry DA, Herzel H, Titze IR, Story BH. Bifurcations in excised larynx experiments. J. Voice. 1996;10:129–138. doi: 10.1016/S0892-1997(96)80039-7. PubMed DOI
Mau T, Muhlestein J, Callahan S, Weinheimer KT, Chan RW. Phonation threshold pressure and flow in excised human larynges. Laryngoscope. 2011;121:1743–1751. doi: 10.1002/lary.21880. PubMed DOI PMC
Regner MF, Tao C, Zhuang P, Jiang JJ. Onset and offset phonation threshold flow in excised canine larynges. Laryngoscope. 2008;118:1313–1317. doi: 10.1097/MLG.0b013e31816e2ec7. PubMed DOI PMC
Zhang Z, Mongeau L, Frankel SH. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes. J. Acoust. Soc. Am. 2002;112:1652–1663. doi: 10.1121/1.1506159. PubMed DOI
Arsikere H, Leung GK, Lulich SM, Alwan A. Automatic estimation of the first three subglottal resonances from adults’ speech signals with application to speaker height estimation. Speech Commun. 2013;55:51–70. doi: 10.1016/j.specom.2012.06.004. DOI
Cranen B, Boves L. On subglottal formant analysis. J. Acoust. Soc. Am. 1987;81:734–746. doi: 10.1121/1.394842. PubMed DOI
Ishizaka K, Matsudaira M, Kaneko T. Input acoustic-impedance measurement of the subglottal system. J. Acoust. Soc. Am. 1976;60:190–197. doi: 10.1121/1.381064. PubMed DOI
Miller, D. G. & Schutte, H. Effects of downstream occlusions on pressures near the glottis in singing. in Vocal fold physiology: Acoustic, perceptual, and physiological aspects of voice mechanism 91–98 (1991).
Schutte HK, Miller DG. The effect of F0/F1 coincidence in soprano high notes on pressure at the glottis. J. Phon. 1986;14:385–392. doi: 10.1016/S0095-4470(19)30713-2. DOI
Svec JG, Granqvist S. Tutorial and guidelines on measurement of sound pressure level in voice and speech. J. Speech Lang. Hear. Res. 2018;61:441–461. doi: 10.1044/2017_JSLHR-S-17-0095. PubMed DOI
Alku P. Glottal inverse filtering analysis of human voice production: A review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana. 2011;36:623–650. doi: 10.1007/s12046-011-0041-5. DOI
Fant G, Liljencrants J, Lin Q-G. A four-parameter model of glottal flow. STL-QPSR. 1985;4:1–13.
The Audacity Team. Audacity: Free Audio Editor and Recorder. At https://www.audacityteam.org/ (2020).
Herbst CT. Glottal efficiency of periodic and irregular in vitro red deer voice production. Acta Acust. United Ac. 2014;100:724–733. doi: 10.3813/AAA.918751. DOI
Herbst CT, Hampala V, Garcia M, Hofer R, Svec JG. Hemi-laryngeal setup for studying vocal fold vibration in three dimensions. J. Vis. Exp. 2017 doi: 10.3791/55303. PubMed DOI PMC
Durham, P. L., Scherer, R., Druker, D. & Titze, I. Development of Excised Larynx Procedures for Studying Mechanisms of Phonation. (Technical report: Voice Acoustics and Biomechanics Laboratory, Department of Speech Pathology and Audiology, The University of Iowa, IA, USA., 1987).
Titze, I. R. Experiments with excised larynges. In The myoelastic aerodynamic theory of phonation 1–62 (National Center for Voice and Speech, 2006).
van den Berg J, Tan TS. Results of experiments with human larynxes. Pract. Oto-Rhino-Laryng. 1959;21:425–450. doi: 10.1159/000274240. PubMed DOI
Camacho A, Harris JG. A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 2008;124:1638–1652. doi: 10.1121/1.2951592. PubMed DOI
Granqvist, S. & Švec, J. G. CalibrateVoiceSPL. Matlab scripts available from http://www.mathworks.com/matlabcentral/fileexchange/64231-calibratevoicespl (last accessed 02.06.2020) (2017).
Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Radiation and Reception of Acoustic Waves. in Fundamentals of Acoustics 171–209 (John Wiley & Sons, Inc. New York, 2000).
Application of nonlinear dynamics theory to understanding normal and pathologic voices in humans