Application of nonlinear dynamics theory to understanding normal and pathologic voices in humans

. 2025 Apr 03 ; 380 (1923) : 20240018. [epub] 20250403

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40176509

Grantová podpora
Palacky University Olomouc
NIDCD NIH HHS - United States

The theory of nonlinear dynamics was introduced to voice science in the 1990s and revolutionized our understanding of human voice production mechanisms. This theory elegantly explains highly complex phenomena in the human voice, such as subharmonic and rough-sounding voice, register breaks, and intermittent aphonic breaks. These phenomena occur not only in pathologic, dysphonic voices but are also explored for artistic purposes, such as contemporary singing. The theory reveals that sudden changes in vocal fold vibratory patterns and fundamental frequency can result from subtle alterations in vocal fold geometry, mechanical properties, adduction, symmetry or lung pressure. Furthermore, these changes can be influenced by interactions with supraglottal tract and subglottal tract resonances. Crucially, the eigenmodes (modes of vibration) of the vocal folds play a significant role in these phenomena. Understanding how the left and right vocal fold eigenmodes interact and entrain with each other, as well as their interplay with supraglottal tissues, glottal airflow and acoustic resonances, is essential for more sophisticated diagnosis and targeted treatment of voice disorders in the future. Additionally, this knowledge can be helpful in modern vocal pedagogy. This article reviews the concepts of nonlinear dynamics that are important for understanding normal and pathologic voice production in humans.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.

Zobrazit více v PubMed

Titze IR. 2000. Principles of voice production (second printing). Iowa City, IA: National Center for Voice and Speech.

Zhang Z. 2016. Mechanics of human voice production and control. J. Acoust. Soc. Am. 140, 2614–2635. (10.1121/1.4964509) PubMed DOI PMC

Herbst CT, Elemans CPH, Tokuda IT, Chatziioannou V, Švec JG. 2023. Dynamic system coupling in voice production. J. Voice 1–13. (10.1016/j.jvoice.2022.10.004) PubMed DOI

Weerathunge HR, Abur D, Enos NM, Brown KM, Stepp CE. 2020. Auditory-motor perturbations of voice fundamental frequency: feedback delay and amplification. J. Speech Lang. Hear. Res. 63, 2846–2860. (10.1044/2020_jslhr-19-00407) PubMed DOI PMC

Kleber B, Friberg A, Zeitouni A, Zatorre R. 2017. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage 147, 97–110. (10.1016/j.neuroimage.2016.11.059) PubMed DOI

Sundberg J. 1992. Phonatory vibrations in singers: a critical review. Music Percept. 9, 361–381. (10.2307/40285557) DOI

Kleber B, Zeitouni AG, Friberg A, Zatorre RJ. 2013. Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J. Neurosci. 33, 6070–6080. (10.1523/jneurosci.4418-12.2013) PubMed DOI PMC

Titze IR, Story B, Smith M, Long R. 2002. A reflex resonance model of vocal vibrato. J. Acoust. Soc. Am. 111, 2272–2282. (10.1121/1.1434945) PubMed DOI

Ricci-Maccarini A, Mozzanica F, Fantini M, Dadduzio S, Bergamini G, Fustos R. 2024. Validity, reliability and reproducibility of the VLS parameters form for the collection of videolaryngostroboscopic basic findings. Eur Arch Otorhinolaryngol 281, 2489–2497. (10.1007/s00405-024-08480-9) PubMed DOI

Bailly L, Bernardoni NH, Müller F, Rohlfs AK, Hess M. 2014. Ventricular-fold dynamics in human phonation. J. Speech Lang. Hear. Res. 57, 1219–1242. (10.1044/2014_JSLHR-S-12-0418) PubMed DOI

Park Y, Baker Brehm S, Kelchner L, Weinrich B, McElfresh K, Anand S, Shrivastav R, de Alarcon A, Eddins DA. 2023. Effects of vibratory source on auditory-perceptual and bio-inspired computational measures of pediatric voice quality. J. Voice (10.1016/j.jvoice.2023.08.016) PubMed DOI PMC

Nasri S, Jasleen J, Gerratt BR, Sercarz JA, Wenokur R, Berke GS. 1996. Ventricular dysphonia: a case of false vocal fold mucosal traveling wave. Am. J. Otolaryngol. 17, 427–431. (10.1016/s0196-0709(96)90080-0) PubMed DOI

Von Doersten PG, Izdebski K, Ross JC, Cruz RM. 1992. Ventricular dysphonia: a profile of 40 cases. Laryngoscope 102, 1296–1301. (10.1288/00005537-199211000-00018) PubMed DOI

Rosen C, Murry T. 2000. Nomenclature of voice disorders and vocal pathology. Otolaryngol. Clin. North Am. 33, 1035–1046. (10.1016/S0030-6665(05)70262-0) PubMed DOI

Maryn Y, De Bodt MS, Van Cauwenberge P. 2003. Ventricular dysphonia: clinical aspects and therapeutic options. Laryngoscope 113, 859–866. (10.1097/00005537-200305000-00016) PubMed DOI

Moisik SR, Esling JH. 2014. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling. J. Speech Lang. Hear. Res. 57, S687–704. (10.1044/2014_JSLHR-S-12-0279) PubMed DOI

Moisik SR, Esling JH, Crevier-Buchman L. 2010. A high-speed laryngoscopic investigation of aryepiglottic trilling. J. Acoust. Soc. Am. 127, 1548–1558. (10.1121/1.3299203) PubMed DOI

Aaen M, McGlashan J, Sadolin C. 2020. Laryngostroboscopic exploration of rough vocal effects in singing and their statistical recognizability: an anatomical and physiological description and visual recognizability study of distortion, growl, rattle, and grunt using laryngostroboscopic imaging and panel assessment. J. Voice 34, 162.e5-162.e14.(10.1016/j.jvoice.2017.12.020) PubMed DOI

Sakakibara KI, Fuks L, Imagawa H, Tayama N. 2004. Growl voice in ethnic and pop styles. In Proc. Int. Symp. Musical Acoustics (ISMA2004), NARA, Japan, 31 March–3 April 2004. https://www.academia.edu/68464345/Growl_Voice_in_Ethnic_and_Pop_Styles.

Lindestad PA, Södersten M, Merker B, Granqvist S. 2001. Voice source characteristics in Mongolian ‘throat singing’ studied with high-speed imaging technique, acoustic spectra, and inverse filtering. J. Voice 15, 78–85. (10.1016/S0892-1997(01)00008-X) PubMed DOI

Bailly L, Henrich N, Pelorson X. 2010. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling. J. Acoust. Soc. Am. 127, 3212–3222. (10.1121/1.3365220) PubMed DOI

Traser L, Fleischer M, Priegnitz D, Köberlein M, Kirsch J, Fischer J. 2024. Characteristics of glottal and supraglottal oscillations of ten different irregular phonation types during metal singing. In Proceedings of the International Conference on Voice Physiology and Biomechanics, ICVPB 2024, Erlangen, Germany, July 22–27 2024,, pp. 56–57.

Wendler J, Dejonckere PH, Wienhausen S, Behlau M, Vaiano T, Nawka T, Mürbe D. 2014. Therapeutic consequences from changing voice ideals (clear to harsh, pleasant to jarring): Summarizing report on a round-table discussion at the 5th World Voice Congress, Luxor, Egypt, 27–31 October 2012. Logoped. Phoniatr. Vocol. 39, 188–190. (10.3109/14015439.2013.825640) PubMed DOI

Milutinovic Z. 1996. Substitute laryngeal voice sources after partial laryngectomies. Logop. Phoniatr. Vocology 21, 143–148. (10.3109/14015439609098882) PubMed DOI

Makeieff M, Giovanni A, Guerrier B. 2007. Laryngostroboscopic evaluation after supracricoid partial laryngectomy. J. Voice 21, 508–515. (10.1016/j.jvoice.2006.03.001) PubMed DOI

van den Berg J. 1958. Myoelastic-aerodynamic theory of voice production. J. Speech Hear. Res. 1, 227–244. (10.1044/jshr.0103.227) PubMed DOI

Titze IR. 1980. Comments on the myoelastic - aerodynamic theory of phonation. J. Speech Hear. Res. 23, 495–510. (10.1044/jshr.2303.495) PubMed DOI

Titze I. 2006. The myoelastic aerodynamic theory of phonation. Denver, CO and Iowa City, IA: National Center for Voice and Speech.

Švec JG, Schutte HK, Chen CJ, Titze IR. 2023. Integrative insights into the myoelastic-aerodynamic theory and acoustics of phonation. Scientific tribute to donald G. Miller. J. Voice 37, 305–313. (10.1016/j.jvoice.2021.01.023) PubMed DOI

Granqvist S, Hertegård S, Larsson H, Sundberg J. 2003. Simultaneous analysis of vocal fold vibration and transglottal airflow: exploring a new experimental setup. J. Voice 17, 319–330. (10.1067/s0892-1997(03)00070-5) PubMed DOI

Herbst C, Howard D, Švec J. 2019. The sound source in singing - basic principles and muscular adjustments for fine-tuning vocal timbre. In Oxford Handbook of Singing (eds Welch G, Howard D, Nix J), pp. 109–144. Oxford, UK: Oxford University Press. (10.1093/oxfordhb/9780199660773.013.011) DOI

Fant G. 1960. Acoustic theory of speech production. The Hague, NL: Mouton.

Chiba T, Kajiyama M. 1941. The vowel -- its nature and structure. Tokyo, Japan: Tokyo Kaiseidan Publishing Company.

Sundberg J. 1977. The acoustics of the singing voice. Sci. Am. 236, 82–91. (10.1038/scientificamerican0377-82) PubMed DOI

Peterson GE, Barney HL. 1952. Control methods used in study of the vowels. J. Acoust. Soc. Am. 24, 175–184. (10.1121/1.1906875) DOI

Story B. 2004. Vowel acoustics for speaking and singing. Acta Acust. United Acust. 90, 629–640.

Titze IR. 2008. Nonlinear source–filter coupling in phonation: Theory. J. Acoust. Soc. Am. 123, 2733–2749. (10.1121/1.2832337) PubMed DOI PMC

Riede T, Bronson E, Hatzikirou H, Zuberbühler K. 2005. Vocal production mechanisms in a non-human primate: morphological data and a model. J. Hum. Evol. 48, 85–96. (10.1016/j.jhevol.2004.10.002) PubMed DOI

Herbst CT, Stoeger AS, Frey R, Lohscheller J, Titze IR, Gumpenberger M, Fitch WT. 2012. How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science 337, 595–599. (10.1126/science.1219712) PubMed DOI

Elemans CPH, et al. . 2015. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 6, 8798. (10.1038/ncomms9978) PubMed DOI PMC

Herbst CT, Prigge T, Garcia M, Hampala V, Hofer R, Weissengruber GE, Svec JG, Fitch WT. 2023. Domestic cat larynges can produce purring frequencies without neural input. Curr. Biol. 33, 4727–4732.(10.1016/j.cub.2023.09.014) PubMed DOI

Elemans CPH, et al. . 2024. Evolutionary novelties underlie sound production in baleen whales. Nature 627, 123–129. (10.1038/s41586-024-07080-1) PubMed DOI

Suthers RA, Narins PM, Lin WY, Schnitzler HU, Denzinger A, Xu CH, Feng AS. 2006. Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog. J. Exp. Biol. 209, 4984–4993. (10.1242/jeb.02594) PubMed DOI

Fitch WT, Suthers RA. 2016. Vertebrate vocal production: An introductory overview. In Vertebrate sound production and acoustic communication. Springer Handbook of Auditory Research, vol 53 (eds Suthers RA, Fitch WT, Fay RR, Popper AN), pp. 1–18. Cham, Switzerland: Springer International Publishing. (10.1007/978-3-319-27721-9_1) DOI

Riede T, Kobrina A, Pasch B. 2024. Anatomy and mechanisms of vocal production in harvest mice. J. Exp. Biol. 227, b246553. (10.1242/jeb.246553) PubMed DOI PMC

Del Olmo M, Schmal C, Herzel H. 2025. Exploring nonlinear phenomena in animal vocalizations through oscillator theory. Phil. Trans. R. Soc. B 380, 20240015. (10.1098/rstb.2024.0015) PubMed DOI PMC

Muir J, Herbst C, Hawes J, O’Mahoney T, Dunn J. 2025. Nonlinear phenomena in mammalian vocal communication: an introduction and scoping review. Phil. Trans. R. Soc. B 380, 20240017. (10.1098/rstb.2024.0017) PubMed DOI PMC

Dossing O. 1988. Structural testing - part 1: mechanical mobility measurements. Naerum, Denmark: Brüel & Kjaer.

Dossing O. 1988. Structural testing - part 2: modal analysis and simulation. Naerum, Denmark: Brüel & Kjaer.

Hambric SA. 2006. Structural acoustics tutorial—part 1: vibrations in structures. Acoust. Today 2, 21–33. (10.1121/1.2961142) DOI

Motoki K. 2002. Three-dimensional acoustic field in vocal-tract. Acoust. Sci. Technol. 23, 207–212. (10.1250/ast.23.207) DOI

Vampola T, Horáček J, Laukkanen AM, Švec JG. 2015. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logop. Phoniatr. Vocology 40, 14–23. (10.3109/14015439.2013.775333) PubMed DOI

Titze IR, Strong WJ. 1975. Normal modes in vocal cord tissues. J. Acoust. Soc. Am. 57, 736–744. (10.1121/1.380498) PubMed DOI

Berry DA, Titze IR. 1996. Normal modes in a continuum model of vocal fold tissues. J. Acoust. Soc. Am. 100, 3345–3354. (10.1121/1.416975) PubMed DOI

Cook DD, Mongeau L. 2007. Sensitivity of a continuum vocal fold model to geometric parameters, constraints, and boundary conditions. J. Acoust. Soc. Am. 121, 2247–2253. (10.1121/1.2536709) PubMed DOI

Xue Q, Zheng X, Bielamowicz S, Mittal R. 2011. Sensitivity of vocal fold vibratory modes to their three-layer structure: Implications for computational modeling of phonation. J. Acoust. Soc. Am. 130, 965–976. (10.1121/1.3605529) PubMed DOI PMC

Švec JG, Horáček J, Šram F, Veselý J. 2000. Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. J. Acoust. Soc. Am. 108, 1397–1407. (10.1121/1.1289205) PubMed DOI

Liljencrants J. 1991. A translating and rotating mass model of the vocal folds. STL QPSR 32, 1–18.

Berry DA, Herzel H, Titze IR, Krischer K. 1994. Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J. Acoust. Soc. Am. 95, 3595–3604. (10.1121/1.409875) PubMed DOI

Berry DA. 2001. Mechanisms of modal and nonmodal phonation. J. Phon. 29, 431–450. (10.1006/jpho.2001.0148) DOI

Ishizaka K, Flanagan J. 1972. Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J. 51, 1233–1268. (10.1002/j.1538-7305.1972.tb02651.x) DOI

Neubauer J, Mergell P, Eysholdt U, Herzel H. 2001. Spatio-temporal analysis of irregular vocal fold oscillations: biphonation due to desynchronization of spatial modes. J. Acoust. Soc. Am. 110, 3179–3192. (10.1121/1.1406498) PubMed DOI

Zhang Y, Jiang J. 2005. Spatiotemporal chaos in excised larynx vibrations. Phys. Rev. E 72, 035201. (10.1103/PhysRevE.72.035201) PubMed DOI

Berry DA, Zhang Z, Neubauer J. 2006. Mechanisms of irregular vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 120, EL36–EL42. (10.1121/1.2234519) PubMed DOI

Tao C, Jiang JJ. 2006. Anterior-posterior biphonation in a finite element model of vocal fold vibration. J. Acoust. Soc. Am. 120, 1570–1577. (10.1121/1.2221546) PubMed DOI

Zhang Y, Jiang JJ. 2008. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx. Chaos 18, 043102. (10.1063/1.2988251) PubMed DOI PMC

Svec JG, Schutte HK, Miller DG. 1996. A subharmonic vibratory pattern in normal vocal folds. J. Speech Hear. Res. 39, 135–143. (10.1044/jshr.3901.135) PubMed DOI

Awrejcewicz J. 1990. Bifurcation portrait of the human vocal cord oscillations. J. Sound Vib. 136, 151–156. (10.1016/0022-460x(90)90945-v) DOI

Baken RJ. 1990. Irregularity of vocal period and amplitude: a first approach to the fractal analysis of voice. J. Voice 4, 185–197. (10.1016/s0892-1997(05)80013-x) DOI

Mende W, Herzel H, Wermke K. 1990. Bifurcations and chaos in newborn infant cries. Phys. Lett. 145, 418–424. (10.1016/0375-9601(90)90305-8) DOI

Herzel H. 1993. Bifurcations and chaos in voice signals. Appl. Mech. Rev. 46, 399–413. (10.1115/1.3120369) DOI

Herzel H, Berry D, Titze IR, Saleh M. 1994. Analysis of vocal disorders with methods from nonlinear dynamics. J. Speech Hear. Res. 37, 1008–1019. (10.1044/jshr.3705.1008) PubMed DOI

Titze I, Baken R, Herzel H. 1993. Evidence of chaos in vocal fold vibration. In Vocal fold physiology: frontiers in basic science (ed Titze IR), pp. 143–188. San Diego, CA: Singular Publishing Group.

Arnold V. 1961. Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk. SSSR Seriya Mat. 25, 21–86.

Wiggins S. 2003. Introduction to applied nonlinear dynamical systems and chaos. New York, NY: Springer-Verlag New York, Inc.

Titze I. 1995. Definitions and nomenclature related to voice quality. In Vocal fold physiology: voice quality control (eds Fujimura O, Hirano M), pp. 335–342. San Diego, CA: Singular Publishing Group.

Gerratt BR, Kreiman J. 2001. Toward a taxonomy of nonmodal phonation. J. Phon. 29, 365–381. (10.1006/jpho.2001.0149) DOI

P, Michelsson K. 1976. Sound-spectrographic cry analysis of normal and abnormal newborn infants. A rewiew and a recommendation for standardization of the cry characteristics. Folia Phoniatr. (Basel) 28, 161–173. (10.1159/000264044) PubMed DOI

Aichinger P, Hagmuller M, Schneider-Stickler B, Schoentgen J, Pernkopf F. 2018. Tracking of multiple fundamental frequencies in diplophonic voices. IEEE/ACM Trans. Audio Speech Lang. Process. 26, 330–341. (10.1109/taslp.2017.2761233) DOI

Aichinger P, Hagmüller M, Roesner I, Schneider-Stickler B, Schoentgen J, Pernkopf F. 2017. Fundamental frequency tracking in diplophonic voices. Biomed. Signal Process. Control 37, 69–81. (10.1016/j.bspc.2016.10.002) DOI

Isshiki N. 1980. Recent advances in phonosurgery. Folia Phoniatr. 32, 119–154. (10.1159/000264334) PubMed DOI

Hirano M. 1981. Clinical examination of voice. (eds Arnold G, Winckel F, Wyke B). Wien, Austria: Springer-Verlag.

Titze IR. 1995. Workshop on acoustic voice analysis. summary statement. Denver, CO: National Center for Voice and Speech.

Jiang JJ, Zhang Y, McGilligan C. 2006. Chaos in voice, from modeling to measurement. J. Voice 20, 2–17. (10.1016/j.jvoice.2005.01.001) PubMed DOI

Zhang Y, Krausert C, Kelly M, Jiang J. 2009. Typing vocal fold vibratory patterns in excised larynx experiments via digital kymography. Ann. Otol. Rhinol. Laryngol. 118, 598–605. (10.1177/000348940911800812) PubMed DOI PMC

Sprecher A, Olszewski A, Jiang JJ, Zhang Y. 2010. Updating signal typing in voice: addition of type 4 signals. J. Acoust. Soc. Am. 127, 3710–3716. (10.1121/1.3397477) PubMed DOI PMC

Wilden I, Herzel H, Peters G, Tembrock G. 1998. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196. (10.1080/09524622.1998.9753394) DOI

Lucero JC. 1993. Dynamics of the two-mass model of the vocal folds: equilibria, bifurcations, and oscillation region. J. Acoust. Soc. Am. 94, 3104–3111. (10.1121/1.407216) DOI

Steinecke I, Herzel H. 1995. Bifurcations in an asymmetric vocal-fold model. J. Acoust. Soc. Am. 97, 1874–1884. (10.1121/1.412061) PubMed DOI

Lucero JC. 1998. Subcritical Hopf bifurcation at phonation onset. J. Sound Vib. 218, 344–349. (10.1006/jsvi.1998.1790) DOI

Zhang Z, Neubauer J, Berry DA. 2007. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. J. Acoust. Soc. Am. 122, 2279–2295. (10.1121/1.2773949) PubMed DOI

Zhang Z. 2010. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. J. Acoust. Soc. Am. 127, 2554–2562. (10.1121/1.3308410) PubMed DOI PMC

Zhang Z. 2016. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J. Acoust. Soc. Am. 139, 1493–1507. (10.1121/1.4944754) PubMed DOI PMC

Zhang Z. 2018. Vocal instabilities in a three-dimensional body-cover phonation model. J. Acoust. Soc. Am. 144, 1216–1230. (10.1121/1.5053116) PubMed DOI PMC

Titze IR. 1992. Phonation threshold pressure: a missing link in glottal aerodynamics. J. Acoust. Soc. Am. 91, 2926–2935. (10.1121/1.402928) PubMed DOI

Mergell P, Herzel H, Wittenberg T, Tigges M, Eysholdt U. 1998. Phonation onset: vocal fold modeling and high-speed glottography. J. Acoust. Soc. Am. 104, 464–470. (10.1121/1.423250) PubMed DOI

Horáček J, Švec JG. 2002. Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. J. Fluids Struct. 16, 931–955. (10.1006/jfls.2002.0454) DOI

Titze IR. 1988. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552. (10.1121/1.395910) PubMed DOI

Cullen J, Gilbert J, Campbell D. 2000. Brass instruments: linear stability analysis and experiments with an artificial mouth. Acustica 86, 704–724.

Aurégan Y, Depollier C. 1995. Snoring: linear stability analysis and in-vitro experiments. J. Sound Vib. 188, 39–53. (10.1006/jsvi.1995.0577) DOI

Plant RL, Freed GL, Plant RE. 2004. Direct measurement of onset and offset phonation threshold pressure in normal subjects. J. Acoust. Soc. Am. 116, 3640–3646. (10.1121/1.1812309) PubMed DOI

Regner MF, Tao C, Zhuang P, Jiang JJ. 2008. Onset and offset phonation threshold flow in excised canine larynges. Laryngoscope 118, 1313–1317. (10.1097/mlg.0b013e31816e2ec7) PubMed DOI PMC

Mau T, Muhlestein J, Callahan S, Weinheimer KT, Chan RW. 2011. Phonation threshold pressure and flow in excised human larynges. Laryngoscope 121, 1743–1751. (10.1002/lary.21880) PubMed DOI PMC

Lucero JC. 1999. A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset–offset. J. Acoust. Soc. Am. 105, 423–431. (10.1121/1.424572) PubMed DOI

Tigges M, Mergell P, Herzel H, Wittenberg T, Eysholdt U. 1997. Observation and modelling of glottal biphonation. Acust. Acta Acust. 83, 707–714.

Wang J, Olszewski E, Devine E, Hoffman M, Zhang Y, Shao J. 2016. Extension and application of high-speed digital imaging analysis via spatiotemporal correlation and eigenmode analysis of vocal fold vibration before and after polyp excision. Ann. Otol. Rhinol. Laryngol. 125, 660–666. (10.1177/0003489416644618) PubMed DOI

Zhang Y, Jiang JJ. 2004. Chaotic vibrations of a vocal fold model with a unilateral polyp. J. Acoust. Soc. Am. 115, 1266–1269. (10.1121/1.1648974) PubMed DOI

Titze I. 2004. Theory of glottal airflow and source-filter interaction in speaking and singing. Acta Acust. United Acust. 90, 641–648. https://iro.uiowa.edu/esploro/outputs/9984719747102771

Rothenberg M, Zahorian S. 1977. Nonlinear inverse filtering technique for estimating the glottal-area waveform. J. Acoust. Soc. Am. 61, 1063–1071. (10.1121/1.381392) PubMed DOI

Rothenberg M. 1987. Cosi fan tutte and what it means or nonlinear source-tract acoustic interaction in the soprano voice and some implications for the definition of vocal efficiency. In Paper presented at the 4th International Conference on Vocal Fold Physiology, New Haven Ct, June 3–6, 1985. Reprinted in the proceedings of the conference Vocal Fold Physiology: Laryngeal Function of Phonation and Respiration (eds Baer T, Sasaki C, Harris K), pp. 254–269. San Diego, CA: College-Hill Press.

Titze IR. 2006. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation. J. Speech Lang. Hear. Res. 49, 439–447. (10.1044/1092-4388(2006/034)) PubMed DOI

Weiss D. 1932. Zur Frage der Registerbruchstellen. Die Wirkung vorgeschalteter Resonanzröhren auf die Stimme. Z Hals- Nas- u Ohrenheilk 70, 353–358.

Sundberg J, Lã F, Granqvist S. 2023. Fundamental frequency disturbances in female and male singers’ pitch glides through long tube with varied resistances. J. Acoust. Soc. Am. 154, 801–807. (10.1121/10.0020569) PubMed DOI

Titze I, Riede T, Popolo P. 2008. Nonlinear source–filter coupling in phonation: vocal exercises. J. Acoust. Soc. Am. 123, 1902–1915. (10.1121/1.2832339) PubMed DOI PMC

Wade L, Hanna N, Smith J, Wolfe J. 2017. The role of vocal tract and subglottal resonances in producing vocal instabilities. J. Acoust. Soc. Am. 141, 1546–1559. (10.1121/1.4976954) PubMed DOI

Kaburagi T, Ando M, Uezu Y. 2019. Source-filter interaction in phonation: a study using vocal-tract data of a soprano singer. Acoust. Sci. Technol. 40, 313–324. (10.1250/ast.40.313) DOI

Echternach M, Herbst CT, Köberlein M, Story B, Döllinger M, Gellrich D. 2021. Are source-filter interactions detectable in classical singing during vowel glides? J. Acoust. Soc. Am. 149, 4565–4578. (10.1121/10.0005432) PubMed DOI

Lucero JC, Lourenço KG, Hermant N, Van Hirtum A, Pelorson X. 2012. Effect of source–tract acoustical coupling on the oscillation onset of the vocal folds. J. Acoust. Soc. Am. 132, 403–411. (10.1121/1.4728170) PubMed DOI

Titze IR, Palaparthi A. 2016. Sensitivity of source–filter interaction to specific vocal tract shapes. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 2507–2515. (10.1109/taslp.2016.2616543) PubMed DOI PMC

Titze IR. 2006. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings. J. Speech Lang. Hear. Res. 49, 448–459. (10.1044/1092-4388(2006/035)) PubMed DOI

Vampola T, Laukkanen AM, Horáček J, Švec JG. 2011. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling. J. Acoust. Soc. Am. 129, 310–315. (10.1121/1.3506347) PubMed DOI

Laukkanen AM, Horáček J, Krupa P, Švec JG. 2012. The effect of phonation into a straw on the vocal tract adjustments and formant frequencies. a preliminary MRI study on a single subject completed with acoustic results. Biomed. Signal Process. Control 7, 50–57. (10.1016/j.bspc.2011.02.004) DOI

Yamasaki R, Murano EZ, Gebrim E, Hachiya A, Montagnoli A, Behlau M, Tsuji D. 2017. Vocal tract adjustments of dysphonic and non-dysphonic women pre- and post-flexible resonance tube in water exercise: a quantitative MRI study. J. Voice 31, 442–454. (10.1016/j.jvoice.2016.10.015) PubMed DOI

Zhang Z. 2023. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production. J. Acoust. Soc. Am. 154, 2462–2475. (10.1121/10.0021879) PubMed DOI PMC

Rothenberg M. 1981. Acoustic interaction between the glottal source and the vocal tract. In Vocal fold physiology (eds Stevens K, Hirano M), pp. 305–328. Tokyo, Japan: University of Tokyo Press.

Zhang Z, Neubauer J, Berry DA. 2006. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 120, 2841–2849. (10.1121/1.2354025) PubMed DOI

Yoshinaga T, Zhang Z, Iida A. 2024. Restraining vocal fold vertical motion reduces source-filter interaction in a two-mass model. JASA Express Lett. 4, 035201. (10.1121/10.0025124) PubMed DOI PMC

Joliveau E, Smith J, Wolfe J. 2004. Acoustics: tuning of vocal tract resonance by sopranos. Nature New Biol. 427, 116. (10.1038/427116a) PubMed DOI

Garnier M, Henrich N, Smith J, Wolfe J. 2010. Vocal tract adjustments in the high soprano range. J. Acoust. Soc. Am. 127, 3771–3780. (10.1121/1.3419907) PubMed DOI

Henrich N, Smith J, Wolfe J. 2011. Vocal tract resonances in singing: strategies used by sopranos, altos, tenors, and baritones. J. Acoust. Soc. Am. 129, 1024–1035. (10.1121/1.3518766) PubMed DOI

Zhang Z, Neubauer J, Berry DA. 2006. The influence of subglottal acoustics on laboratory models of phonation. J. Acoust. Soc. Am. 120, 1558–1569. (10.1121/1.2225682) PubMed DOI

Zhang Z, Neubauer J, Berry DA. 2009. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model. J. Sound Vib. 322, 299–313. (10.1016/j.jsv.2008.11.009) PubMed DOI PMC

Hatzikirou H, Fitch W, Herzel H. 2006. Voice instabilities due to source-tract interactions. Acta Acust. United Acust 92, 468–475.

Maxfield L, Palaparthi A, Titze I. 2017. New evidence that nonlinear source-filter coupling affects harmonic intensity and fo stability during instances of harmonics crossing formants. J. Voice 31, 149–156. (10.1016/j.jvoice.2016.04.010) PubMed DOI PMC

Murtola T, Aalto A, Malinen J, Aalto D, Vainio M. 2018. Modal locking between vocal fold oscillations and vocal tract acoustics. Acustica United with Acta Acustica, 104, 323–337. (10.3813/aaa.919175) DOI

Migimatsu K, Tokuda IT. 2019. Experimental study on nonlinear source–filter interaction using synthetic vocal fold models. J. Acoust. Soc. Am. 146, 983–997. (10.1121/1.5120618) PubMed DOI

Lulich SM, Zanartu M, Mehta DD, Hillman RE. 2009. Source-filter interaction in the opposite direction: subglottal coupling and the influence of vocal fold mechanics on vowel spectra during the closed phase. In Proc. Mtgs. Acoust., Portland, Oregon, May 18–22, 2009 vol. 6, pp. 1–14, (10.1121/1.3269926) DOI

Lehoux S, Hampala V, Švec JG. 2021. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations. Sci. Rep 11, 28. (10.1038/s41598-020-79265-3) PubMed DOI PMC

Howe MS, McGowan RS. 2009. Analysis of flow-structure coupling in a mechanical model of the vocal folds and the subglottal system. J. Fluids Struct. 25, 1299–1317. (10.1016/j.jfluidstructs.2009.08.002) PubMed DOI PMC

Lehoux S, Herbst CT, Dobiáš M, Švec JG. 2023. Frequency jumps in excised larynges in anechoic conditions: a pilot study. J. Sound Vib 551, 117607. (10.1016/j.jsv.2023.117607) DOI

Titze IR. 1988. A framework for the study of vocal registers. J. Voice 2, 183–194. (10.1016/s0892-1997(88)80075-4) DOI

Roubeau B, Henrich N, Castellengo M. 2009. Laryngeal vibratory mechanisms: the notion of vocal register revisited. J. Voice 23, 425–438. (10.1016/j.jvoice.2007.10.014) PubMed DOI

Herbst C. 2020. Registers—the snake pit of voice pedagogy. Part 1: Proprioception, perception, and laryngeal mechanisms. J. Sing. 77, 175–190.

Weinrich B, Brehm SB, LeBorgne W, Eanes C, Zacharias S, Beckmeyer J, Hughes M, de Alarcon A. 2022. Perceptual measures of boychoir voices during the phases of pubertal voice mutation. J. Voice 36, 142.(10.1016/j.jvoice.2020.04.002) PubMed DOI

Willis EC, Kenny DT. 2008. Relationship between weight, speaking fundamental frequency, and the appearance of phonational gaps in the adolescent male changing voice. J. Voice 22, 451–471. (10.1016/j.jvoice.2006.11.007) PubMed DOI

Echternach M, Richter B. 2010. Vocal perfection in yodelling-pitch stabilities and transition times. Logop. Phoniatr. Vocology 35, 6–12. (10.3109/14015430903518015) PubMed DOI

Wise T. 2016. Yodeling and meaning in American music. Jackson, MS: University Press of Mississippi. (10.14325/mississippi/9781496805805.001.0001) DOI

Berry DA, Montequin DW. 1998. Contrasting chest and falsettolike vibration patterns of the vocal folds. J. Acoust. Soc. Am. 103, 3056–3057. (10.1121/1.422674) DOI

Tokuda IT, Horáček J, Švec JG, Herzel H. 2007. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments. J. Acoust. Soc. Am. 122, 519–531. (10.1121/1.2741210) PubMed DOI

Zhang Z. 2009. Characteristics of phonation onset in a two-layer vocal fold model. J. Acoust. Soc. Am. 125, 1091–1102. (10.1121/1.3050285) PubMed DOI PMC

Geng B, Movahhedi M, Xue Q, Zheng X. 2021. Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx. J. Acoust. Soc. Am. 150, 1176–1187. (10.1121/10.0005883) PubMed DOI

Tokuda I. 2014. Nonlinear science of singing voice:bifurcation analysis of register transitions. J. Acoust. Soc. Jpn. 70, 512–518. (10.20697/jasj.70.9_512) DOI

Herbst CT, Elemans CPH. 2025. Vocal registers expand signal diversity in vertebrate vocal communication. Phil. Trans. R. Soc. B 380, 20240006. (10.1098/rstb.2024.0006) PubMed DOI PMC

Berry DA, Herzel H, Titze IR, Story BH. 1996. Bifurcations in excised larynx experiments. J. Voice 10, 129–138. (10.1016/s0892-1997(96)80039-7) PubMed DOI

Švec JG, Schutte HK, Miller DG. 1999. On pitch jumps between chest and falsetto registers in voice: data from living and excised human larynges. J. Acoust. Soc. Am. 106, 1523–1531. (10.1121/1.427149) PubMed DOI

Zhang Z. 2023. Vocal fold vertical thickness in human voice production and control: a review. J. Voice (10.1016/j.jvoice.2023.02.021) PubMed DOI PMC

Chhetri DK, Neubauer J, Sofer E, Berry DA. 2014. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control. J. Acoust. Soc. Am. 135, 2052–2064. (10.1121/1.4865918) PubMed DOI PMC

Miller DG, Švec JG, Schutte HK. 2002. Measurement of characteristic leap interval between chest and falsetto registers. J. Voice 16, 8–19. (10.1016/s0892-1997(02)00066-8) PubMed DOI

Lamesch S, Doval B, Castellengo M. 2013. Experimental study of the frequency leap interval produced by the change of laryngeal vibratory mechanism during sustained notes. In Proceedings of SMAC 2013, 4th Stockholm Music Acoustics Conference (eds Bresin R, Askenfelt A), pp. 280–285. Stockholm, Sweden: KTH Royal Institute of Technology.

Herbst CT, Tokuda I, Nishimura T, Ternström S, Ossio V, Levy M, Fitch T, Dunn J. 2025. ‘Monkey yodels’ – frequency jumps in New World monkey vocalizations greatly surpass human vocal register transitions. Phil. Trans. R. Soc. B 380, 20240005. (10.1098/rstb.2024.0005) PubMed DOI PMC

Švec JG. 2004. Research journey: chest-falsetto discontinuity and videokymography. In Physiology and Acoustics of Singing (PAS), 3–5 October 2002, Groningen, The Netherlands (eds Schutte HK, Poppema S, Bos E). Groningen, the Netherlands: Groningen Voice Research Lab.

Švec J, Pešák J. 1994. Vocal breaks from the modal to falsetto register. Folia Phoniatr Logop 46, 97–103. (10.1159/000266298) PubMed DOI

Bloothooft G, Wijck M van, Pabon P. Relations between vocal registers in voice breaks. In 7th European Conference on Speech Communication and Technology (Eurospeech 2001), Aalborg, Denmark. International Speech Communication Association (ISCA). https://www.isca-archive.org/eurospeech_2001.

Zhang Y, Reynders WJ, Jiang JJ, Tateya I. 2007. Determination of phonation instability pressure and phonation pressure range in excised larynges. J. Speech Lang. Hear. Res. 50, 611–620. (10.1044/1092-4388(2007/043)) PubMed DOI

Švec J. 2000. On vibration properties of human vocal folds: voice registers, bifurcations, resonance characteristics, development and application of videokymography (Ph.D. thesis). [Groningen, The Netherlands: ]: University of Groningen.

Inoue T, Shiozawa K, Matsumoto T, Kanaya M, Tokuda IT. 2024. Nonlinear dynamics and chaos in a vocal-ventricular fold system. Chaos 34, 023134. (10.1063/5.0155215) PubMed DOI

Granqvist S, Lindestad PÅ. 2001. A method of applying Fourier analysis to high-speed laryngoscopy. J. Acoust. Soc. Am. 110, 3193–3197. (10.1121/1.1397321) PubMed DOI

Fuks L, Hammarberg B, Sundberg J. 1998. A self-sustained vocal-ventricular phonation mode: acoustical, aerodynamic and glottographic evidences. TMH QPSR 3, 49–59.

Herbst CT, Hertegard S, Zangger-Borch D, Lindestad PÅ. 2017. Freddie Mercury—acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics. Logop. Phoniatr. Vocology 42, 29–38. (10.3109/14015439.2016.1156737) PubMed DOI

Borch DZ, Sundberg J, Lindestad PÅ, Thalén M. 2004. Vocal fold vibration and voice source aperiodicity in ‘dist’ tones: a study of a timbral ornament in rock singing. Logoped. Phoniatr. Vocol. 29, 147–153. (10.1080/14015430410016073) PubMed DOI

Hirano M, Kurita S, Yukizane K, Hibi S. 1989. Asymmetry of the laryngeal framework - a morphologic study of cadaver larynges. Ann. Otol. Rhinol. Laryngol. 98, 135–140. (10.1177/000348948909800210) PubMed DOI

Lindestad PÅ, Hertegard S, Björck G. 2004. Laryngeal adduction asymmetries in normal speaking subjects. Logop. Phoniatr Vocol 29, 128–134. (10.1080/14015430410017009) PubMed DOI

Friedrich G, Kainz J. 1988. Morphometrie des Kehlkopfes an Horizontalschnitten. Laryngorhinootologie 67, 269–274. (10.1055/s-2007-998496) PubMed DOI

Lucero JC, Schoentgen J, Haas J, Luizard P, Pelorson X. 2015. Self-entrainment of the right and left vocal fold oscillators. J. Acoust. Soc. Am. 137, 2036–2046. (10.1121/1.4916601) PubMed DOI

Ishizaka K, Isshiki N. 1976. Computer simulation of pathological vocal-cord vibration. J. Acoust. Soc. Am. 60, 1193–1198. (10.1121/1.381221) PubMed DOI

Isshiki N, Tanabe M, Ishizaka K, Broad D. 1977. Clinical significance of asymmetrical vocal cord tension. Ann. Otol. Rhinol. Laryngol. 86, 58–66. (10.1177/000348947708600109) PubMed DOI

Bonilha HS, Deliyski DD, Gerlach TT. 2008. Phase asymmetries in normophonic speakers: visual judgments and objective findings. Am. J. Speech Lang. Pathol. 17, 367–376. (10.1044/1058-0360(2008/07-0059)) PubMed DOI PMC

Pickup BA, Thomson SL. 2009. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models. J. Biomech. 42, 2219–2225. (10.1016/j.jbiomech.2009.06.039) PubMed DOI PMC

Švec J, Šram F, Schutte H. 2007. Videokymography in voice disorders: what to look for? Ann. Otol. Rhinol. Laryngol. 116, 172–180. (10.1177/000348940711600303) PubMed DOI

Zhang Z, Hieu Luu T. 2012. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation. J. Acoust. Soc. Am. 132, 1626–1635. (10.1121/1.4739437) PubMed DOI PMC

Eysholdt U, Rosanowski F, Hoppe U. 2003. Vocal fold vibration irregularities caused by different types of laryngeal asymmetry. Eur. Arch. Otorhinolaryngol. 260, 412–417. (10.1007/s00405-003-0606-y) PubMed DOI

Schindler A, Bottero A, Capaccio P, Ginocchio D, Adorni F, Ottaviani F. 2008. Vocal improvement after voice therapy in unilateral vocal fold paralysis. J. Voice 22, 113–118. (10.1016/j.jvoice.2006.08.004) PubMed DOI

Walton C, Conway E, Blackshaw H, Carding P. 2017. Unilateral vocal fold paralysis: a systematic review of speech-language pathology management. J. Voice 31, 509.(10.1016/j.jvoice.2016.11.002) PubMed DOI

Kissel I, Meerschman I, D’haeseleer E, Papeleu T, Tomassen P, Claeys S, Leyns C, Van Nuffelen G, Van Lierde K. 2024. Clinical effects of voice therapy on vocal outcomes in unilateral vocal fold paralysis: proof-of-concept study for two SOVT-based treatment protocols. J. Voice (10.1016/j.jvoice.2024.08.034) PubMed DOI

Isshiki N, Morita H, Okamura H, Hiramoto M. 1974. Thyroplasty as a new phonosurgical technique. Acta Otolaryngol 78, 451–457. (10.3109/00016487409126379) PubMed DOI

Isshiki N. 2000. Progress in laryngeal framework surgery. Acta Otolaryngol 120, 120–127. (10.1080/000164800750000748) PubMed DOI

Friedrich G, de Jong FI, Mahieu HF, Benninger MS, Isshiki N. 2001. Laryngeal framework surgery: a proposal for classification and nomenclature by the phonosurgery committee of the European Laryngological Society. Eur. Arch. Otorhinolaryngol. 258, 389–396. (10.1007/s004050100375) PubMed DOI

Smatanová K, Burián A, Dršata J, Krtičková J, Kőnig-Péter A, Mejzlík J, Chrobok V. 2023. Comparison of short and long-term results after injection laryngoplasty with Radiesse® voice and thyroplasty type I in unilateral vocal fold palsy. Acta. Medica. Cordoba 66, 107–111. (10.14712/18059694.2024.2) PubMed DOI

Isshiki N, Tanabe M, Sawada M. 1978. Arytenoid adduction for unilateral vocal cord paralysis. Arch Otolaryngol 104, 555–558. (10.1001/archotol.1978.00790100009002) PubMed DOI

Zeitels S, Hochman I, Hillman R. 1998. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization. Ann. Otol. Rhinol. Laryngol. 107, 1–24. PubMed

Woo P. 2000. Arytenoid adduction and medialization laryngoplasty. Otolaryngol. Clin. N. Am. 33, 817–840. (10.1016/s0030-6665(05)70246-2) PubMed DOI

Tsuji DH, de Almeida ER, Sennes LU, Butugan O, Pinho SMR. 2003. Comparison between thyroplasty type I and arytenoid rotation: a study of vocal fold vibration using excised human larynges. J. Voice 17, 596–604. (10.1067/s0892-1997(03)00071-7) PubMed DOI

McNamar J, Montequin DW, Welham NV, Dailey SH. 2008. Aerodynamic, acoustic, and vibratory comparison of arytenoid adduction and adduction arytenopexy. Laryngoscope 118, 552–558. (10.1097/mlg.0b013e31815acaf9) PubMed DOI

Nerurkar NK, Pawar SM, Dighe SN. 2016. A comprehensive 6-year retrospective study on medialisation thyroplasty in the Indian population. Eur. Arch. Oto Rhino Laryngol. 273, 1835–1840. (10.1007/s00405-016-3982-9) PubMed DOI

Gray SD, Barkmeier J, Jones D, Titze I, Druker D. 1992. Vocal evaluation of thyroplastic surgery in the treatment of unilateral vocal fold paralysis. Laryngoscope 102, 415–421. (10.1288/00005537-199204000-00008) PubMed DOI

Orestes MI, Neubauer J, Sofer E, Salinas J, Chhetri DK. 2014. Phonatory effects of type I thyroplasty implant shape and depth of medialization in unilateral vocal fold paralysis. Laryngoscope 124, 2791–2796. (10.1002/lary.24851) PubMed DOI PMC

Zhang Z. 2024. Contribution of undesired medial surface shape to suboptimal voice outcome after medialization laryngoplasty. J. Voice 38, 1220–1226. (10.1016/j.jvoice.2022.03.010) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...