Application of nonlinear dynamics theory to understanding normal and pathologic voices in humans
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Palacky University Olomouc
NIDCD NIH HHS - United States
PubMed
40176509
PubMed Central
PMC11966169
DOI
10.1098/rstb.2024.0018
Knihovny.cz E-zdroje
- Klíčová slova
- dysphonia, entrainment, nonlinear phenomena, singing, vocal fold eigenmodes, voice production,
- MeSH
- hlas * fyziologie MeSH
- hlasové řasy * fyziologie MeSH
- lidé MeSH
- nelineární dynamika * MeSH
- poruchy hlasu * patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The theory of nonlinear dynamics was introduced to voice science in the 1990s and revolutionized our understanding of human voice production mechanisms. This theory elegantly explains highly complex phenomena in the human voice, such as subharmonic and rough-sounding voice, register breaks, and intermittent aphonic breaks. These phenomena occur not only in pathologic, dysphonic voices but are also explored for artistic purposes, such as contemporary singing. The theory reveals that sudden changes in vocal fold vibratory patterns and fundamental frequency can result from subtle alterations in vocal fold geometry, mechanical properties, adduction, symmetry or lung pressure. Furthermore, these changes can be influenced by interactions with supraglottal tract and subglottal tract resonances. Crucially, the eigenmodes (modes of vibration) of the vocal folds play a significant role in these phenomena. Understanding how the left and right vocal fold eigenmodes interact and entrain with each other, as well as their interplay with supraglottal tissues, glottal airflow and acoustic resonances, is essential for more sophisticated diagnosis and targeted treatment of voice disorders in the future. Additionally, this knowledge can be helpful in modern vocal pedagogy. This article reviews the concepts of nonlinear dynamics that are important for understanding normal and pathologic voice production in humans.This article is part of the theme issue 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
Zobrazit více v PubMed
Titze IR. 2000. Principles of voice production (second printing). Iowa City, IA: National Center for Voice and Speech.
Zhang Z. 2016. Mechanics of human voice production and control. J. Acoust. Soc. Am. 140, 2614–2635. (10.1121/1.4964509) PubMed DOI PMC
Herbst CT, Elemans CPH, Tokuda IT, Chatziioannou V, Švec JG. 2023. Dynamic system coupling in voice production. J. Voice 1–13. (10.1016/j.jvoice.2022.10.004) PubMed DOI
Weerathunge HR, Abur D, Enos NM, Brown KM, Stepp CE. 2020. Auditory-motor perturbations of voice fundamental frequency: feedback delay and amplification. J. Speech Lang. Hear. Res. 63, 2846–2860. (10.1044/2020_jslhr-19-00407) PubMed DOI PMC
Kleber B, Friberg A, Zeitouni A, Zatorre R. 2017. Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. Neuroimage 147, 97–110. (10.1016/j.neuroimage.2016.11.059) PubMed DOI
Sundberg J. 1992. Phonatory vibrations in singers: a critical review. Music Percept. 9, 361–381. (10.2307/40285557) DOI
Kleber B, Zeitouni AG, Friberg A, Zatorre RJ. 2013. Experience-dependent modulation of feedback integration during singing: role of the right anterior insula. J. Neurosci. 33, 6070–6080. (10.1523/jneurosci.4418-12.2013) PubMed DOI PMC
Titze IR, Story B, Smith M, Long R. 2002. A reflex resonance model of vocal vibrato. J. Acoust. Soc. Am. 111, 2272–2282. (10.1121/1.1434945) PubMed DOI
Ricci-Maccarini A, Mozzanica F, Fantini M, Dadduzio S, Bergamini G, Fustos R. 2024. Validity, reliability and reproducibility of the VLS parameters form for the collection of videolaryngostroboscopic basic findings. Eur Arch Otorhinolaryngol 281, 2489–2497. (10.1007/s00405-024-08480-9) PubMed DOI
Bailly L, Bernardoni NH, Müller F, Rohlfs AK, Hess M. 2014. Ventricular-fold dynamics in human phonation. J. Speech Lang. Hear. Res. 57, 1219–1242. (10.1044/2014_JSLHR-S-12-0418) PubMed DOI
Park Y, Baker Brehm S, Kelchner L, Weinrich B, McElfresh K, Anand S, Shrivastav R, de Alarcon A, Eddins DA. 2023. Effects of vibratory source on auditory-perceptual and bio-inspired computational measures of pediatric voice quality. J. Voice (10.1016/j.jvoice.2023.08.016) PubMed DOI PMC
Nasri S, Jasleen J, Gerratt BR, Sercarz JA, Wenokur R, Berke GS. 1996. Ventricular dysphonia: a case of false vocal fold mucosal traveling wave. Am. J. Otolaryngol. 17, 427–431. (10.1016/s0196-0709(96)90080-0) PubMed DOI
Von Doersten PG, Izdebski K, Ross JC, Cruz RM. 1992. Ventricular dysphonia: a profile of 40 cases. Laryngoscope 102, 1296–1301. (10.1288/00005537-199211000-00018) PubMed DOI
Rosen C, Murry T. 2000. Nomenclature of voice disorders and vocal pathology. Otolaryngol. Clin. North Am. 33, 1035–1046. (10.1016/S0030-6665(05)70262-0) PubMed DOI
Maryn Y, De Bodt MS, Van Cauwenberge P. 2003. Ventricular dysphonia: clinical aspects and therapeutic options. Laryngoscope 113, 859–866. (10.1097/00005537-200305000-00016) PubMed DOI
Moisik SR, Esling JH. 2014. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling. J. Speech Lang. Hear. Res. 57, S687–704. (10.1044/2014_JSLHR-S-12-0279) PubMed DOI
Moisik SR, Esling JH, Crevier-Buchman L. 2010. A high-speed laryngoscopic investigation of aryepiglottic trilling. J. Acoust. Soc. Am. 127, 1548–1558. (10.1121/1.3299203) PubMed DOI
Aaen M, McGlashan J, Sadolin C. 2020. Laryngostroboscopic exploration of rough vocal effects in singing and their statistical recognizability: an anatomical and physiological description and visual recognizability study of distortion, growl, rattle, and grunt using laryngostroboscopic imaging and panel assessment. J. Voice 34, 162.e5-162.e14.(10.1016/j.jvoice.2017.12.020) PubMed DOI
Sakakibara KI, Fuks L, Imagawa H, Tayama N. 2004. Growl voice in ethnic and pop styles. In Proc. Int. Symp. Musical Acoustics (ISMA2004), NARA, Japan, 31 March–3 April 2004. https://www.academia.edu/68464345/Growl_Voice_in_Ethnic_and_Pop_Styles.
Lindestad PA, Södersten M, Merker B, Granqvist S. 2001. Voice source characteristics in Mongolian ‘throat singing’ studied with high-speed imaging technique, acoustic spectra, and inverse filtering. J. Voice 15, 78–85. (10.1016/S0892-1997(01)00008-X) PubMed DOI
Bailly L, Henrich N, Pelorson X. 2010. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling. J. Acoust. Soc. Am. 127, 3212–3222. (10.1121/1.3365220) PubMed DOI
Traser L, Fleischer M, Priegnitz D, Köberlein M, Kirsch J, Fischer J. 2024. Characteristics of glottal and supraglottal oscillations of ten different irregular phonation types during metal singing. In Proceedings of the International Conference on Voice Physiology and Biomechanics, ICVPB 2024, Erlangen, Germany, July 22–27 2024,, pp. 56–57.
Wendler J, Dejonckere PH, Wienhausen S, Behlau M, Vaiano T, Nawka T, Mürbe D. 2014. Therapeutic consequences from changing voice ideals (clear to harsh, pleasant to jarring): Summarizing report on a round-table discussion at the 5th World Voice Congress, Luxor, Egypt, 27–31 October 2012. Logoped. Phoniatr. Vocol. 39, 188–190. (10.3109/14015439.2013.825640) PubMed DOI
Milutinovic Z. 1996. Substitute laryngeal voice sources after partial laryngectomies. Logop. Phoniatr. Vocology 21, 143–148. (10.3109/14015439609098882) PubMed DOI
Makeieff M, Giovanni A, Guerrier B. 2007. Laryngostroboscopic evaluation after supracricoid partial laryngectomy. J. Voice 21, 508–515. (10.1016/j.jvoice.2006.03.001) PubMed DOI
van den Berg J. 1958. Myoelastic-aerodynamic theory of voice production. J. Speech Hear. Res. 1, 227–244. (10.1044/jshr.0103.227) PubMed DOI
Titze IR. 1980. Comments on the myoelastic - aerodynamic theory of phonation. J. Speech Hear. Res. 23, 495–510. (10.1044/jshr.2303.495) PubMed DOI
Titze I. 2006. The myoelastic aerodynamic theory of phonation. Denver, CO and Iowa City, IA: National Center for Voice and Speech.
Švec JG, Schutte HK, Chen CJ, Titze IR. 2023. Integrative insights into the myoelastic-aerodynamic theory and acoustics of phonation. Scientific tribute to donald G. Miller. J. Voice 37, 305–313. (10.1016/j.jvoice.2021.01.023) PubMed DOI
Granqvist S, Hertegård S, Larsson H, Sundberg J. 2003. Simultaneous analysis of vocal fold vibration and transglottal airflow: exploring a new experimental setup. J. Voice 17, 319–330. (10.1067/s0892-1997(03)00070-5) PubMed DOI
Herbst C, Howard D, Švec J. 2019. The sound source in singing - basic principles and muscular adjustments for fine-tuning vocal timbre. In Oxford Handbook of Singing (eds Welch G, Howard D, Nix J), pp. 109–144. Oxford, UK: Oxford University Press. (10.1093/oxfordhb/9780199660773.013.011) DOI
Fant G. 1960. Acoustic theory of speech production. The Hague, NL: Mouton.
Chiba T, Kajiyama M. 1941. The vowel -- its nature and structure. Tokyo, Japan: Tokyo Kaiseidan Publishing Company.
Sundberg J. 1977. The acoustics of the singing voice. Sci. Am. 236, 82–91. (10.1038/scientificamerican0377-82) PubMed DOI
Peterson GE, Barney HL. 1952. Control methods used in study of the vowels. J. Acoust. Soc. Am. 24, 175–184. (10.1121/1.1906875) DOI
Story B. 2004. Vowel acoustics for speaking and singing. Acta Acust. United Acust. 90, 629–640.
Titze IR. 2008. Nonlinear source–filter coupling in phonation: Theory. J. Acoust. Soc. Am. 123, 2733–2749. (10.1121/1.2832337) PubMed DOI PMC
Riede T, Bronson E, Hatzikirou H, Zuberbühler K. 2005. Vocal production mechanisms in a non-human primate: morphological data and a model. J. Hum. Evol. 48, 85–96. (10.1016/j.jhevol.2004.10.002) PubMed DOI
Herbst CT, Stoeger AS, Frey R, Lohscheller J, Titze IR, Gumpenberger M, Fitch WT. 2012. How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science 337, 595–599. (10.1126/science.1219712) PubMed DOI
Elemans CPH, et al. . 2015. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 6, 8798. (10.1038/ncomms9978) PubMed DOI PMC
Herbst CT, Prigge T, Garcia M, Hampala V, Hofer R, Weissengruber GE, Svec JG, Fitch WT. 2023. Domestic cat larynges can produce purring frequencies without neural input. Curr. Biol. 33, 4727–4732.(10.1016/j.cub.2023.09.014) PubMed DOI
Elemans CPH, et al. . 2024. Evolutionary novelties underlie sound production in baleen whales. Nature 627, 123–129. (10.1038/s41586-024-07080-1) PubMed DOI
Suthers RA, Narins PM, Lin WY, Schnitzler HU, Denzinger A, Xu CH, Feng AS. 2006. Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog. J. Exp. Biol. 209, 4984–4993. (10.1242/jeb.02594) PubMed DOI
Fitch WT, Suthers RA. 2016. Vertebrate vocal production: An introductory overview. In Vertebrate sound production and acoustic communication. Springer Handbook of Auditory Research, vol 53 (eds Suthers RA, Fitch WT, Fay RR, Popper AN), pp. 1–18. Cham, Switzerland: Springer International Publishing. (10.1007/978-3-319-27721-9_1) DOI
Riede T, Kobrina A, Pasch B. 2024. Anatomy and mechanisms of vocal production in harvest mice. J. Exp. Biol. 227, b246553. (10.1242/jeb.246553) PubMed DOI PMC
Del Olmo M, Schmal C, Herzel H. 2025. Exploring nonlinear phenomena in animal vocalizations through oscillator theory. Phil. Trans. R. Soc. B 380, 20240015. (10.1098/rstb.2024.0015) PubMed DOI PMC
Muir J, Herbst C, Hawes J, O’Mahoney T, Dunn J. 2025. Nonlinear phenomena in mammalian vocal communication: an introduction and scoping review. Phil. Trans. R. Soc. B 380, 20240017. (10.1098/rstb.2024.0017) PubMed DOI PMC
Dossing O. 1988. Structural testing - part 1: mechanical mobility measurements. Naerum, Denmark: Brüel & Kjaer.
Dossing O. 1988. Structural testing - part 2: modal analysis and simulation. Naerum, Denmark: Brüel & Kjaer.
Hambric SA. 2006. Structural acoustics tutorial—part 1: vibrations in structures. Acoust. Today 2, 21–33. (10.1121/1.2961142) DOI
Motoki K. 2002. Three-dimensional acoustic field in vocal-tract. Acoust. Sci. Technol. 23, 207–212. (10.1250/ast.23.207) DOI
Vampola T, Horáček J, Laukkanen AM, Švec JG. 2015. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logop. Phoniatr. Vocology 40, 14–23. (10.3109/14015439.2013.775333) PubMed DOI
Titze IR, Strong WJ. 1975. Normal modes in vocal cord tissues. J. Acoust. Soc. Am. 57, 736–744. (10.1121/1.380498) PubMed DOI
Berry DA, Titze IR. 1996. Normal modes in a continuum model of vocal fold tissues. J. Acoust. Soc. Am. 100, 3345–3354. (10.1121/1.416975) PubMed DOI
Cook DD, Mongeau L. 2007. Sensitivity of a continuum vocal fold model to geometric parameters, constraints, and boundary conditions. J. Acoust. Soc. Am. 121, 2247–2253. (10.1121/1.2536709) PubMed DOI
Xue Q, Zheng X, Bielamowicz S, Mittal R. 2011. Sensitivity of vocal fold vibratory modes to their three-layer structure: Implications for computational modeling of phonation. J. Acoust. Soc. Am. 130, 965–976. (10.1121/1.3605529) PubMed DOI PMC
Švec JG, Horáček J, Šram F, Veselý J. 2000. Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. J. Acoust. Soc. Am. 108, 1397–1407. (10.1121/1.1289205) PubMed DOI
Liljencrants J. 1991. A translating and rotating mass model of the vocal folds. STL QPSR 32, 1–18.
Berry DA, Herzel H, Titze IR, Krischer K. 1994. Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J. Acoust. Soc. Am. 95, 3595–3604. (10.1121/1.409875) PubMed DOI
Berry DA. 2001. Mechanisms of modal and nonmodal phonation. J. Phon. 29, 431–450. (10.1006/jpho.2001.0148) DOI
Ishizaka K, Flanagan J. 1972. Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J. 51, 1233–1268. (10.1002/j.1538-7305.1972.tb02651.x) DOI
Neubauer J, Mergell P, Eysholdt U, Herzel H. 2001. Spatio-temporal analysis of irregular vocal fold oscillations: biphonation due to desynchronization of spatial modes. J. Acoust. Soc. Am. 110, 3179–3192. (10.1121/1.1406498) PubMed DOI
Zhang Y, Jiang J. 2005. Spatiotemporal chaos in excised larynx vibrations. Phys. Rev. E 72, 035201. (10.1103/PhysRevE.72.035201) PubMed DOI
Berry DA, Zhang Z, Neubauer J. 2006. Mechanisms of irregular vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 120, EL36–EL42. (10.1121/1.2234519) PubMed DOI
Tao C, Jiang JJ. 2006. Anterior-posterior biphonation in a finite element model of vocal fold vibration. J. Acoust. Soc. Am. 120, 1570–1577. (10.1121/1.2221546) PubMed DOI
Zhang Y, Jiang JJ. 2008. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx. Chaos 18, 043102. (10.1063/1.2988251) PubMed DOI PMC
Svec JG, Schutte HK, Miller DG. 1996. A subharmonic vibratory pattern in normal vocal folds. J. Speech Hear. Res. 39, 135–143. (10.1044/jshr.3901.135) PubMed DOI
Awrejcewicz J. 1990. Bifurcation portrait of the human vocal cord oscillations. J. Sound Vib. 136, 151–156. (10.1016/0022-460x(90)90945-v) DOI
Baken RJ. 1990. Irregularity of vocal period and amplitude: a first approach to the fractal analysis of voice. J. Voice 4, 185–197. (10.1016/s0892-1997(05)80013-x) DOI
Mende W, Herzel H, Wermke K. 1990. Bifurcations and chaos in newborn infant cries. Phys. Lett. 145, 418–424. (10.1016/0375-9601(90)90305-8) DOI
Herzel H. 1993. Bifurcations and chaos in voice signals. Appl. Mech. Rev. 46, 399–413. (10.1115/1.3120369) DOI
Herzel H, Berry D, Titze IR, Saleh M. 1994. Analysis of vocal disorders with methods from nonlinear dynamics. J. Speech Hear. Res. 37, 1008–1019. (10.1044/jshr.3705.1008) PubMed DOI
Titze I, Baken R, Herzel H. 1993. Evidence of chaos in vocal fold vibration. In Vocal fold physiology: frontiers in basic science (ed Titze IR), pp. 143–188. San Diego, CA: Singular Publishing Group.
Arnold V. 1961. Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk. SSSR Seriya Mat. 25, 21–86.
Wiggins S. 2003. Introduction to applied nonlinear dynamical systems and chaos. New York, NY: Springer-Verlag New York, Inc.
Titze I. 1995. Definitions and nomenclature related to voice quality. In Vocal fold physiology: voice quality control (eds Fujimura O, Hirano M), pp. 335–342. San Diego, CA: Singular Publishing Group.
Gerratt BR, Kreiman J. 2001. Toward a taxonomy of nonmodal phonation. J. Phon. 29, 365–381. (10.1006/jpho.2001.0149) DOI
P, Michelsson K. 1976. Sound-spectrographic cry analysis of normal and abnormal newborn infants. A rewiew and a recommendation for standardization of the cry characteristics. Folia Phoniatr. (Basel) 28, 161–173. (10.1159/000264044) PubMed DOI
Aichinger P, Hagmuller M, Schneider-Stickler B, Schoentgen J, Pernkopf F. 2018. Tracking of multiple fundamental frequencies in diplophonic voices. IEEE/ACM Trans. Audio Speech Lang. Process. 26, 330–341. (10.1109/taslp.2017.2761233) DOI
Aichinger P, Hagmüller M, Roesner I, Schneider-Stickler B, Schoentgen J, Pernkopf F. 2017. Fundamental frequency tracking in diplophonic voices. Biomed. Signal Process. Control 37, 69–81. (10.1016/j.bspc.2016.10.002) DOI
Isshiki N. 1980. Recent advances in phonosurgery. Folia Phoniatr. 32, 119–154. (10.1159/000264334) PubMed DOI
Hirano M. 1981. Clinical examination of voice. (eds Arnold G, Winckel F, Wyke B). Wien, Austria: Springer-Verlag.
Titze IR. 1995. Workshop on acoustic voice analysis. summary statement. Denver, CO: National Center for Voice and Speech.
Jiang JJ, Zhang Y, McGilligan C. 2006. Chaos in voice, from modeling to measurement. J. Voice 20, 2–17. (10.1016/j.jvoice.2005.01.001) PubMed DOI
Zhang Y, Krausert C, Kelly M, Jiang J. 2009. Typing vocal fold vibratory patterns in excised larynx experiments via digital kymography. Ann. Otol. Rhinol. Laryngol. 118, 598–605. (10.1177/000348940911800812) PubMed DOI PMC
Sprecher A, Olszewski A, Jiang JJ, Zhang Y. 2010. Updating signal typing in voice: addition of type 4 signals. J. Acoust. Soc. Am. 127, 3710–3716. (10.1121/1.3397477) PubMed DOI PMC
Wilden I, Herzel H, Peters G, Tembrock G. 1998. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9, 171–196. (10.1080/09524622.1998.9753394) DOI
Lucero JC. 1993. Dynamics of the two-mass model of the vocal folds: equilibria, bifurcations, and oscillation region. J. Acoust. Soc. Am. 94, 3104–3111. (10.1121/1.407216) DOI
Steinecke I, Herzel H. 1995. Bifurcations in an asymmetric vocal-fold model. J. Acoust. Soc. Am. 97, 1874–1884. (10.1121/1.412061) PubMed DOI
Lucero JC. 1998. Subcritical Hopf bifurcation at phonation onset. J. Sound Vib. 218, 344–349. (10.1006/jsvi.1998.1790) DOI
Zhang Z, Neubauer J, Berry DA. 2007. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation. J. Acoust. Soc. Am. 122, 2279–2295. (10.1121/1.2773949) PubMed DOI
Zhang Z. 2010. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. J. Acoust. Soc. Am. 127, 2554–2562. (10.1121/1.3308410) PubMed DOI PMC
Zhang Z. 2016. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J. Acoust. Soc. Am. 139, 1493–1507. (10.1121/1.4944754) PubMed DOI PMC
Zhang Z. 2018. Vocal instabilities in a three-dimensional body-cover phonation model. J. Acoust. Soc. Am. 144, 1216–1230. (10.1121/1.5053116) PubMed DOI PMC
Titze IR. 1992. Phonation threshold pressure: a missing link in glottal aerodynamics. J. Acoust. Soc. Am. 91, 2926–2935. (10.1121/1.402928) PubMed DOI
Mergell P, Herzel H, Wittenberg T, Tigges M, Eysholdt U. 1998. Phonation onset: vocal fold modeling and high-speed glottography. J. Acoust. Soc. Am. 104, 464–470. (10.1121/1.423250) PubMed DOI
Horáček J, Švec JG. 2002. Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. J. Fluids Struct. 16, 931–955. (10.1006/jfls.2002.0454) DOI
Titze IR. 1988. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552. (10.1121/1.395910) PubMed DOI
Cullen J, Gilbert J, Campbell D. 2000. Brass instruments: linear stability analysis and experiments with an artificial mouth. Acustica 86, 704–724.
Aurégan Y, Depollier C. 1995. Snoring: linear stability analysis and in-vitro experiments. J. Sound Vib. 188, 39–53. (10.1006/jsvi.1995.0577) DOI
Plant RL, Freed GL, Plant RE. 2004. Direct measurement of onset and offset phonation threshold pressure in normal subjects. J. Acoust. Soc. Am. 116, 3640–3646. (10.1121/1.1812309) PubMed DOI
Regner MF, Tao C, Zhuang P, Jiang JJ. 2008. Onset and offset phonation threshold flow in excised canine larynges. Laryngoscope 118, 1313–1317. (10.1097/mlg.0b013e31816e2ec7) PubMed DOI PMC
Mau T, Muhlestein J, Callahan S, Weinheimer KT, Chan RW. 2011. Phonation threshold pressure and flow in excised human larynges. Laryngoscope 121, 1743–1751. (10.1002/lary.21880) PubMed DOI PMC
Lucero JC. 1999. A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset–offset. J. Acoust. Soc. Am. 105, 423–431. (10.1121/1.424572) PubMed DOI
Tigges M, Mergell P, Herzel H, Wittenberg T, Eysholdt U. 1997. Observation and modelling of glottal biphonation. Acust. Acta Acust. 83, 707–714.
Wang J, Olszewski E, Devine E, Hoffman M, Zhang Y, Shao J. 2016. Extension and application of high-speed digital imaging analysis via spatiotemporal correlation and eigenmode analysis of vocal fold vibration before and after polyp excision. Ann. Otol. Rhinol. Laryngol. 125, 660–666. (10.1177/0003489416644618) PubMed DOI
Zhang Y, Jiang JJ. 2004. Chaotic vibrations of a vocal fold model with a unilateral polyp. J. Acoust. Soc. Am. 115, 1266–1269. (10.1121/1.1648974) PubMed DOI
Titze I. 2004. Theory of glottal airflow and source-filter interaction in speaking and singing. Acta Acust. United Acust. 90, 641–648. https://iro.uiowa.edu/esploro/outputs/9984719747102771
Rothenberg M, Zahorian S. 1977. Nonlinear inverse filtering technique for estimating the glottal-area waveform. J. Acoust. Soc. Am. 61, 1063–1071. (10.1121/1.381392) PubMed DOI
Rothenberg M. 1987. Cosi fan tutte and what it means or nonlinear source-tract acoustic interaction in the soprano voice and some implications for the definition of vocal efficiency. In Paper presented at the 4th International Conference on Vocal Fold Physiology, New Haven Ct, June 3–6, 1985. Reprinted in the proceedings of the conference Vocal Fold Physiology: Laryngeal Function of Phonation and Respiration (eds Baer T, Sasaki C, Harris K), pp. 254–269. San Diego, CA: College-Hill Press.
Titze IR. 2006. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation. J. Speech Lang. Hear. Res. 49, 439–447. (10.1044/1092-4388(2006/034)) PubMed DOI
Weiss D. 1932. Zur Frage der Registerbruchstellen. Die Wirkung vorgeschalteter Resonanzröhren auf die Stimme. Z Hals- Nas- u Ohrenheilk 70, 353–358.
Sundberg J, Lã F, Granqvist S. 2023. Fundamental frequency disturbances in female and male singers’ pitch glides through long tube with varied resistances. J. Acoust. Soc. Am. 154, 801–807. (10.1121/10.0020569) PubMed DOI
Titze I, Riede T, Popolo P. 2008. Nonlinear source–filter coupling in phonation: vocal exercises. J. Acoust. Soc. Am. 123, 1902–1915. (10.1121/1.2832339) PubMed DOI PMC
Wade L, Hanna N, Smith J, Wolfe J. 2017. The role of vocal tract and subglottal resonances in producing vocal instabilities. J. Acoust. Soc. Am. 141, 1546–1559. (10.1121/1.4976954) PubMed DOI
Kaburagi T, Ando M, Uezu Y. 2019. Source-filter interaction in phonation: a study using vocal-tract data of a soprano singer. Acoust. Sci. Technol. 40, 313–324. (10.1250/ast.40.313) DOI
Echternach M, Herbst CT, Köberlein M, Story B, Döllinger M, Gellrich D. 2021. Are source-filter interactions detectable in classical singing during vowel glides? J. Acoust. Soc. Am. 149, 4565–4578. (10.1121/10.0005432) PubMed DOI
Lucero JC, Lourenço KG, Hermant N, Van Hirtum A, Pelorson X. 2012. Effect of source–tract acoustical coupling on the oscillation onset of the vocal folds. J. Acoust. Soc. Am. 132, 403–411. (10.1121/1.4728170) PubMed DOI
Titze IR, Palaparthi A. 2016. Sensitivity of source–filter interaction to specific vocal tract shapes. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 2507–2515. (10.1109/taslp.2016.2616543) PubMed DOI PMC
Titze IR. 2006. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings. J. Speech Lang. Hear. Res. 49, 448–459. (10.1044/1092-4388(2006/035)) PubMed DOI
Vampola T, Laukkanen AM, Horáček J, Švec JG. 2011. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling. J. Acoust. Soc. Am. 129, 310–315. (10.1121/1.3506347) PubMed DOI
Laukkanen AM, Horáček J, Krupa P, Švec JG. 2012. The effect of phonation into a straw on the vocal tract adjustments and formant frequencies. a preliminary MRI study on a single subject completed with acoustic results. Biomed. Signal Process. Control 7, 50–57. (10.1016/j.bspc.2011.02.004) DOI
Yamasaki R, Murano EZ, Gebrim E, Hachiya A, Montagnoli A, Behlau M, Tsuji D. 2017. Vocal tract adjustments of dysphonic and non-dysphonic women pre- and post-flexible resonance tube in water exercise: a quantitative MRI study. J. Voice 31, 442–454. (10.1016/j.jvoice.2016.10.015) PubMed DOI
Zhang Z. 2023. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production. J. Acoust. Soc. Am. 154, 2462–2475. (10.1121/10.0021879) PubMed DOI PMC
Rothenberg M. 1981. Acoustic interaction between the glottal source and the vocal tract. In Vocal fold physiology (eds Stevens K, Hirano M), pp. 305–328. Tokyo, Japan: University of Tokyo Press.
Zhang Z, Neubauer J, Berry DA. 2006. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. J. Acoust. Soc. Am. 120, 2841–2849. (10.1121/1.2354025) PubMed DOI
Yoshinaga T, Zhang Z, Iida A. 2024. Restraining vocal fold vertical motion reduces source-filter interaction in a two-mass model. JASA Express Lett. 4, 035201. (10.1121/10.0025124) PubMed DOI PMC
Joliveau E, Smith J, Wolfe J. 2004. Acoustics: tuning of vocal tract resonance by sopranos. Nature New Biol. 427, 116. (10.1038/427116a) PubMed DOI
Garnier M, Henrich N, Smith J, Wolfe J. 2010. Vocal tract adjustments in the high soprano range. J. Acoust. Soc. Am. 127, 3771–3780. (10.1121/1.3419907) PubMed DOI
Henrich N, Smith J, Wolfe J. 2011. Vocal tract resonances in singing: strategies used by sopranos, altos, tenors, and baritones. J. Acoust. Soc. Am. 129, 1024–1035. (10.1121/1.3518766) PubMed DOI
Zhang Z, Neubauer J, Berry DA. 2006. The influence of subglottal acoustics on laboratory models of phonation. J. Acoust. Soc. Am. 120, 1558–1569. (10.1121/1.2225682) PubMed DOI
Zhang Z, Neubauer J, Berry DA. 2009. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model. J. Sound Vib. 322, 299–313. (10.1016/j.jsv.2008.11.009) PubMed DOI PMC
Hatzikirou H, Fitch W, Herzel H. 2006. Voice instabilities due to source-tract interactions. Acta Acust. United Acust 92, 468–475.
Maxfield L, Palaparthi A, Titze I. 2017. New evidence that nonlinear source-filter coupling affects harmonic intensity and fo stability during instances of harmonics crossing formants. J. Voice 31, 149–156. (10.1016/j.jvoice.2016.04.010) PubMed DOI PMC
Murtola T, Aalto A, Malinen J, Aalto D, Vainio M. 2018. Modal locking between vocal fold oscillations and vocal tract acoustics. Acustica United with Acta Acustica, 104, 323–337. (10.3813/aaa.919175) DOI
Migimatsu K, Tokuda IT. 2019. Experimental study on nonlinear source–filter interaction using synthetic vocal fold models. J. Acoust. Soc. Am. 146, 983–997. (10.1121/1.5120618) PubMed DOI
Lulich SM, Zanartu M, Mehta DD, Hillman RE. 2009. Source-filter interaction in the opposite direction: subglottal coupling and the influence of vocal fold mechanics on vowel spectra during the closed phase. In Proc. Mtgs. Acoust., Portland, Oregon, May 18–22, 2009 vol. 6, pp. 1–14, (10.1121/1.3269926) DOI
Lehoux S, Hampala V, Švec JG. 2021. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations. Sci. Rep 11, 28. (10.1038/s41598-020-79265-3) PubMed DOI PMC
Howe MS, McGowan RS. 2009. Analysis of flow-structure coupling in a mechanical model of the vocal folds and the subglottal system. J. Fluids Struct. 25, 1299–1317. (10.1016/j.jfluidstructs.2009.08.002) PubMed DOI PMC
Lehoux S, Herbst CT, Dobiáš M, Švec JG. 2023. Frequency jumps in excised larynges in anechoic conditions: a pilot study. J. Sound Vib 551, 117607. (10.1016/j.jsv.2023.117607) DOI
Titze IR. 1988. A framework for the study of vocal registers. J. Voice 2, 183–194. (10.1016/s0892-1997(88)80075-4) DOI
Roubeau B, Henrich N, Castellengo M. 2009. Laryngeal vibratory mechanisms: the notion of vocal register revisited. J. Voice 23, 425–438. (10.1016/j.jvoice.2007.10.014) PubMed DOI
Herbst C. 2020. Registers—the snake pit of voice pedagogy. Part 1: Proprioception, perception, and laryngeal mechanisms. J. Sing. 77, 175–190.
Weinrich B, Brehm SB, LeBorgne W, Eanes C, Zacharias S, Beckmeyer J, Hughes M, de Alarcon A. 2022. Perceptual measures of boychoir voices during the phases of pubertal voice mutation. J. Voice 36, 142.(10.1016/j.jvoice.2020.04.002) PubMed DOI
Willis EC, Kenny DT. 2008. Relationship between weight, speaking fundamental frequency, and the appearance of phonational gaps in the adolescent male changing voice. J. Voice 22, 451–471. (10.1016/j.jvoice.2006.11.007) PubMed DOI
Echternach M, Richter B. 2010. Vocal perfection in yodelling-pitch stabilities and transition times. Logop. Phoniatr. Vocology 35, 6–12. (10.3109/14015430903518015) PubMed DOI
Wise T. 2016. Yodeling and meaning in American music. Jackson, MS: University Press of Mississippi. (10.14325/mississippi/9781496805805.001.0001) DOI
Berry DA, Montequin DW. 1998. Contrasting chest and falsettolike vibration patterns of the vocal folds. J. Acoust. Soc. Am. 103, 3056–3057. (10.1121/1.422674) DOI
Tokuda IT, Horáček J, Švec JG, Herzel H. 2007. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments. J. Acoust. Soc. Am. 122, 519–531. (10.1121/1.2741210) PubMed DOI
Zhang Z. 2009. Characteristics of phonation onset in a two-layer vocal fold model. J. Acoust. Soc. Am. 125, 1091–1102. (10.1121/1.3050285) PubMed DOI PMC
Geng B, Movahhedi M, Xue Q, Zheng X. 2021. Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx. J. Acoust. Soc. Am. 150, 1176–1187. (10.1121/10.0005883) PubMed DOI
Tokuda I. 2014. Nonlinear science of singing voice:bifurcation analysis of register transitions. J. Acoust. Soc. Jpn. 70, 512–518. (10.20697/jasj.70.9_512) DOI
Herbst CT, Elemans CPH. 2025. Vocal registers expand signal diversity in vertebrate vocal communication. Phil. Trans. R. Soc. B 380, 20240006. (10.1098/rstb.2024.0006) PubMed DOI PMC
Berry DA, Herzel H, Titze IR, Story BH. 1996. Bifurcations in excised larynx experiments. J. Voice 10, 129–138. (10.1016/s0892-1997(96)80039-7) PubMed DOI
Švec JG, Schutte HK, Miller DG. 1999. On pitch jumps between chest and falsetto registers in voice: data from living and excised human larynges. J. Acoust. Soc. Am. 106, 1523–1531. (10.1121/1.427149) PubMed DOI
Zhang Z. 2023. Vocal fold vertical thickness in human voice production and control: a review. J. Voice (10.1016/j.jvoice.2023.02.021) PubMed DOI PMC
Chhetri DK, Neubauer J, Sofer E, Berry DA. 2014. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control. J. Acoust. Soc. Am. 135, 2052–2064. (10.1121/1.4865918) PubMed DOI PMC
Miller DG, Švec JG, Schutte HK. 2002. Measurement of characteristic leap interval between chest and falsetto registers. J. Voice 16, 8–19. (10.1016/s0892-1997(02)00066-8) PubMed DOI
Lamesch S, Doval B, Castellengo M. 2013. Experimental study of the frequency leap interval produced by the change of laryngeal vibratory mechanism during sustained notes. In Proceedings of SMAC 2013, 4th Stockholm Music Acoustics Conference (eds Bresin R, Askenfelt A), pp. 280–285. Stockholm, Sweden: KTH Royal Institute of Technology.
Herbst CT, Tokuda I, Nishimura T, Ternström S, Ossio V, Levy M, Fitch T, Dunn J. 2025. ‘Monkey yodels’ – frequency jumps in New World monkey vocalizations greatly surpass human vocal register transitions. Phil. Trans. R. Soc. B 380, 20240005. (10.1098/rstb.2024.0005) PubMed DOI PMC
Švec JG. 2004. Research journey: chest-falsetto discontinuity and videokymography. In Physiology and Acoustics of Singing (PAS), 3–5 October 2002, Groningen, The Netherlands (eds Schutte HK, Poppema S, Bos E). Groningen, the Netherlands: Groningen Voice Research Lab.
Švec J, Pešák J. 1994. Vocal breaks from the modal to falsetto register. Folia Phoniatr Logop 46, 97–103. (10.1159/000266298) PubMed DOI
Bloothooft G, Wijck M van, Pabon P. Relations between vocal registers in voice breaks. In 7th European Conference on Speech Communication and Technology (Eurospeech 2001), Aalborg, Denmark. International Speech Communication Association (ISCA). https://www.isca-archive.org/eurospeech_2001.
Zhang Y, Reynders WJ, Jiang JJ, Tateya I. 2007. Determination of phonation instability pressure and phonation pressure range in excised larynges. J. Speech Lang. Hear. Res. 50, 611–620. (10.1044/1092-4388(2007/043)) PubMed DOI
Švec J. 2000. On vibration properties of human vocal folds: voice registers, bifurcations, resonance characteristics, development and application of videokymography (Ph.D. thesis). [Groningen, The Netherlands: ]: University of Groningen.
Inoue T, Shiozawa K, Matsumoto T, Kanaya M, Tokuda IT. 2024. Nonlinear dynamics and chaos in a vocal-ventricular fold system. Chaos 34, 023134. (10.1063/5.0155215) PubMed DOI
Granqvist S, Lindestad PÅ. 2001. A method of applying Fourier analysis to high-speed laryngoscopy. J. Acoust. Soc. Am. 110, 3193–3197. (10.1121/1.1397321) PubMed DOI
Fuks L, Hammarberg B, Sundberg J. 1998. A self-sustained vocal-ventricular phonation mode: acoustical, aerodynamic and glottographic evidences. TMH QPSR 3, 49–59.
Herbst CT, Hertegard S, Zangger-Borch D, Lindestad PÅ. 2017. Freddie Mercury—acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics. Logop. Phoniatr. Vocology 42, 29–38. (10.3109/14015439.2016.1156737) PubMed DOI
Borch DZ, Sundberg J, Lindestad PÅ, Thalén M. 2004. Vocal fold vibration and voice source aperiodicity in ‘dist’ tones: a study of a timbral ornament in rock singing. Logoped. Phoniatr. Vocol. 29, 147–153. (10.1080/14015430410016073) PubMed DOI
Hirano M, Kurita S, Yukizane K, Hibi S. 1989. Asymmetry of the laryngeal framework - a morphologic study of cadaver larynges. Ann. Otol. Rhinol. Laryngol. 98, 135–140. (10.1177/000348948909800210) PubMed DOI
Lindestad PÅ, Hertegard S, Björck G. 2004. Laryngeal adduction asymmetries in normal speaking subjects. Logop. Phoniatr Vocol 29, 128–134. (10.1080/14015430410017009) PubMed DOI
Friedrich G, Kainz J. 1988. Morphometrie des Kehlkopfes an Horizontalschnitten. Laryngorhinootologie 67, 269–274. (10.1055/s-2007-998496) PubMed DOI
Lucero JC, Schoentgen J, Haas J, Luizard P, Pelorson X. 2015. Self-entrainment of the right and left vocal fold oscillators. J. Acoust. Soc. Am. 137, 2036–2046. (10.1121/1.4916601) PubMed DOI
Ishizaka K, Isshiki N. 1976. Computer simulation of pathological vocal-cord vibration. J. Acoust. Soc. Am. 60, 1193–1198. (10.1121/1.381221) PubMed DOI
Isshiki N, Tanabe M, Ishizaka K, Broad D. 1977. Clinical significance of asymmetrical vocal cord tension. Ann. Otol. Rhinol. Laryngol. 86, 58–66. (10.1177/000348947708600109) PubMed DOI
Bonilha HS, Deliyski DD, Gerlach TT. 2008. Phase asymmetries in normophonic speakers: visual judgments and objective findings. Am. J. Speech Lang. Pathol. 17, 367–376. (10.1044/1058-0360(2008/07-0059)) PubMed DOI PMC
Pickup BA, Thomson SL. 2009. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models. J. Biomech. 42, 2219–2225. (10.1016/j.jbiomech.2009.06.039) PubMed DOI PMC
Švec J, Šram F, Schutte H. 2007. Videokymography in voice disorders: what to look for? Ann. Otol. Rhinol. Laryngol. 116, 172–180. (10.1177/000348940711600303) PubMed DOI
Zhang Z, Hieu Luu T. 2012. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation. J. Acoust. Soc. Am. 132, 1626–1635. (10.1121/1.4739437) PubMed DOI PMC
Eysholdt U, Rosanowski F, Hoppe U. 2003. Vocal fold vibration irregularities caused by different types of laryngeal asymmetry. Eur. Arch. Otorhinolaryngol. 260, 412–417. (10.1007/s00405-003-0606-y) PubMed DOI
Schindler A, Bottero A, Capaccio P, Ginocchio D, Adorni F, Ottaviani F. 2008. Vocal improvement after voice therapy in unilateral vocal fold paralysis. J. Voice 22, 113–118. (10.1016/j.jvoice.2006.08.004) PubMed DOI
Walton C, Conway E, Blackshaw H, Carding P. 2017. Unilateral vocal fold paralysis: a systematic review of speech-language pathology management. J. Voice 31, 509.(10.1016/j.jvoice.2016.11.002) PubMed DOI
Kissel I, Meerschman I, D’haeseleer E, Papeleu T, Tomassen P, Claeys S, Leyns C, Van Nuffelen G, Van Lierde K. 2024. Clinical effects of voice therapy on vocal outcomes in unilateral vocal fold paralysis: proof-of-concept study for two SOVT-based treatment protocols. J. Voice (10.1016/j.jvoice.2024.08.034) PubMed DOI
Isshiki N, Morita H, Okamura H, Hiramoto M. 1974. Thyroplasty as a new phonosurgical technique. Acta Otolaryngol 78, 451–457. (10.3109/00016487409126379) PubMed DOI
Isshiki N. 2000. Progress in laryngeal framework surgery. Acta Otolaryngol 120, 120–127. (10.1080/000164800750000748) PubMed DOI
Friedrich G, de Jong FI, Mahieu HF, Benninger MS, Isshiki N. 2001. Laryngeal framework surgery: a proposal for classification and nomenclature by the phonosurgery committee of the European Laryngological Society. Eur. Arch. Otorhinolaryngol. 258, 389–396. (10.1007/s004050100375) PubMed DOI
Smatanová K, Burián A, Dršata J, Krtičková J, Kőnig-Péter A, Mejzlík J, Chrobok V. 2023. Comparison of short and long-term results after injection laryngoplasty with Radiesse® voice and thyroplasty type I in unilateral vocal fold palsy. Acta. Medica. Cordoba 66, 107–111. (10.14712/18059694.2024.2) PubMed DOI
Isshiki N, Tanabe M, Sawada M. 1978. Arytenoid adduction for unilateral vocal cord paralysis. Arch Otolaryngol 104, 555–558. (10.1001/archotol.1978.00790100009002) PubMed DOI
Zeitels S, Hochman I, Hillman R. 1998. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization. Ann. Otol. Rhinol. Laryngol. 107, 1–24. PubMed
Woo P. 2000. Arytenoid adduction and medialization laryngoplasty. Otolaryngol. Clin. N. Am. 33, 817–840. (10.1016/s0030-6665(05)70246-2) PubMed DOI
Tsuji DH, de Almeida ER, Sennes LU, Butugan O, Pinho SMR. 2003. Comparison between thyroplasty type I and arytenoid rotation: a study of vocal fold vibration using excised human larynges. J. Voice 17, 596–604. (10.1067/s0892-1997(03)00071-7) PubMed DOI
McNamar J, Montequin DW, Welham NV, Dailey SH. 2008. Aerodynamic, acoustic, and vibratory comparison of arytenoid adduction and adduction arytenopexy. Laryngoscope 118, 552–558. (10.1097/mlg.0b013e31815acaf9) PubMed DOI
Nerurkar NK, Pawar SM, Dighe SN. 2016. A comprehensive 6-year retrospective study on medialisation thyroplasty in the Indian population. Eur. Arch. Oto Rhino Laryngol. 273, 1835–1840. (10.1007/s00405-016-3982-9) PubMed DOI
Gray SD, Barkmeier J, Jones D, Titze I, Druker D. 1992. Vocal evaluation of thyroplastic surgery in the treatment of unilateral vocal fold paralysis. Laryngoscope 102, 415–421. (10.1288/00005537-199204000-00008) PubMed DOI
Orestes MI, Neubauer J, Sofer E, Salinas J, Chhetri DK. 2014. Phonatory effects of type I thyroplasty implant shape and depth of medialization in unilateral vocal fold paralysis. Laryngoscope 124, 2791–2796. (10.1002/lary.24851) PubMed DOI PMC
Zhang Z. 2024. Contribution of undesired medial surface shape to suboptimal voice outcome after medialization laryngoplasty. J. Voice 38, 1220–1226. (10.1016/j.jvoice.2022.03.010) PubMed DOI