Real-space investigation of polarons in hematite Fe2O3
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39485848
PubMed Central
PMC11529705
DOI
10.1126/sciadv.adp7833
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In polarizable materials, electronic charge carriers interact with the surrounding ions, leading to quasiparticle behavior. The resulting polarons play a central role in many materials properties including electrical transport, interaction with light, surface reactivity, and magnetoresistance, and polarons are typically investigated indirectly through these macroscopic characteristics. Here, noncontact atomic force microscopy (nc-AFM) is used to directly image polarons in Fe2O3 at the single quasiparticle limit. A combination of Kelvin probe force microscopy (KPFM) and kinetic Monte Carlo (KMC) simulations shows that the mobility of electron polarons can be markedly increased by Ti doping. Density functional theory (DFT) calculations indicate that a transition from polaronic to metastable free-carrier states can play a key role in migration of electron polarons. In contrast, hole polarons are significantly less mobile, and their hopping is hampered further by trapping centers.
Dipartimento di Fisica e Astronomia Università di Bologna 40127 Bologna Italy
Institute of Applied Physics TU Wien 1040 Vienna Austria
Institute of Experimental and Applied Physics University of Regensburg 93040 Regensburg Germany
Institute of Physical Chemistry University of Innsbruck 6020 Innsbruck Austria
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Prague 6 Czech Republic
Marian Smoluchowski Institute of Physics Jagiellonian University 30 348 Krakow Poland
University of Vienna Faculty of Physics Center for Computational Materials Science Vienna Austria
Zobrazit více v PubMed
Parkinson G. S., Iron oxide surfaces. Surf. Sci. Rep. 71, 272–365 (2016).
Sivula K., Formal F. L., Grätzel M., Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4, 432–449 (2011). PubMed
Zhang J., Eslava S., Understanding charge transfer, defects and surface states at hematite photoanodes. Sust. Energy Fuels 3, 1351–1364 (2019).
Franchini C., Reticcioli M., Setvin M., Diebold U., Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
Austin I. G., Mott N. F., Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (2001).
Coropceanu V., Cornil J., Filho D. A. S., Olivier Y., Silbey R., Brédas J.-L., Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007). PubMed
Ortmann F., Bechstedt F., Hannewald K., Charge transport in organic crystals: Theory and modelling. Phys. Stat. Solidi B 248, 511–525 (2011).
Natanzon Y., Azulay A., Amouyal Y., Evaluation of polaron transport in solids from first-principles. Israel J. Chem. 60, 768–786 (2020).
van Mechelen J. L. M., van der Marel D., Grimaldi C., Kuzmenko A. B., Armitage N. P., Reyren N., Hagemann H., Mazin I. I., Electron-phonon interaction and charge carrier mass enhancement in SrTiO3. Phys. Rev. Lett. 100, 226403 (2008). PubMed
Valentin C. D., Pacchioni G., Selloni A., Reduced and n-Type doped TiO2: Nature of Ti3+ Species. J. Phys. Chem. C 113, 20543–20552 (2009).
Papageorgiou A. C., Beglitis N. S., Pang C. L., Teobaldi G., Cabailh G., Chen Q., Fisher A. J., Hofer W. A., Thornton G., Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 107, 2391–2396 (2010). PubMed PMC
Teresa J. M. D., Ibarra M. R., Algarabel P. A., Ritter C., Marquina C., Blasco J., García J., Moral A., Arnold Z., Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386, 256–259 (1997).
Jooss C., Wu L., Beetz T., Klie R. F., Beleggia M., Schofield M. A., Schramm S., Hoffmann J., Zhu Y., Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. Proc. Natl. Acad. Sci. U.S.A. 104, 13597–13602 (2007). PubMed PMC
Song S., Kim J., Lee D., Lee J., Min T., Chae J.-A., Bae J.-S., Lee J., Lee J.-S., Park S., The effect of Fe2+ state in electrical property variations of Sn-doped hematite powders. J. Am. Ceram. Soc. 100, 3928–3934 (2017).
Cogan D., Lonegran L. A., Electrical conduction in Fe2O3 and Cr2O3. Sol. State Commun. 15, 1517–1519 (1974).
Smart T. J., Cardiel A. C., Wu F., Choi K.-S., Ping Y., Mechanistic insights of enhanced spin polaron conduction in CuO through atomic doping. NPJ Computat. Mater. 4, 61 (2018).
Karsthof R., Grundmann M., Anton A. M., Kremer F., Polaronic interacceptor hopping transport in intrinsically doped nickel oxide. Phys. Rev. B 99, 235201 (2019).
Zhang W., Wu F., Li J., Yan D., Tao J., Ping Y., Liu M., Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting. ACS Energy Lett. 3, 2232–2239 (2018).
Henderson M. A., Insights into the (1 × 1) to (2 × 1) phase transition of the α-Fe2O3(012) surface using EELS LEED and water TPD. Surf. Sci. 515, 253–262 (2002).
Kraushofer F., Jakub Z., Bichler M., Hulva J., Drmota P., Weinold M., Schmid M., Setvin M., Diebold U., Blaha P., Parkinson G. S., Atomic-scale structure of the hematite α-Fe2O3(1-102) “R-Cut” surface. J. Phys. Chem. C 122, 1657–1669 (2018). PubMed PMC
Franceschi G., Kraushofer F., Meier M., Parkinson G. S., Schmid M., Diebold U., Riva M., A model system for photocatalysis: Ti-doped α-Fe2O3(11̅02) single-crystalline films. Chem. Mater. 32, 3753–3764 (2020). PubMed PMC
Tamirat A. G., Rick J., Dubale A. A., Su W.-N., Hwang B.-J., Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 1, 243–267 (2016). PubMed
Li C., Luo Z., Wang T., Gong J., Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting. Adv. Mater. 30, e1707502 (2018). PubMed
Giessibl F. J., The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90, 011101 (2019). PubMed
S. Sadewasser, T. Glatzel, Kelvin Probe Force Microscopy (Springer-Verlag, 2012).
Gross L., Mohn F., Liljeroth P., Repp J., Giessibl F. J., Meyer G., Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009). PubMed
Setvin M., Hulva J., Parkinson G. S., Schmid M., Diebold U., Electron transfer between anatase TiO2 and an O2 molecule directly observed by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 114, E2556–E2562 (2017). PubMed PMC
Fatayer S., Schuler B., Steurer W., Scivetti I., Repp J., Gross L., Persson M., Meyer G., Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 13, 376–380 (2018). PubMed
Ahart C. S., Rosso K. M., Blumberger J., Electron and hole mobilities in bulk hematite from spin-constrained density functional theory. J. Am. Chem. Soc. 144, 4623–4632 (2022). PubMed PMC
Iordanova N., Dupuis M., Rosso K. M., Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122, 144305 (2005). PubMed
Chen M., Grieder A. C., Smart T. J., Mayford K., McNair S., Pinongcos A., Eisenberg S., Bridges F., Li Y., Ping Y., The impacts of dopants on the small polaron mobility and conductivity in hematite–the role of disorder. Nanoscale 15, 1619–1628 (2023). PubMed
Cheng C., Zhu Y., Zhou Z., Long R., Fang W.-H., Photoinduced small electron polarons generation and recombination in hematite. NPJ Computat. Mater. 8, 148 (2022).
Barzykin A. V., Tachiya M., Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J. Phys. Chem. B 106, 4356–4363 (2002).
Nelson J., Haque S. A., Klug D. R., Durrant J. R., Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys. Rev. B 63, 205321 (2001).
Mortreuil F., Boudou L., Makasheva K., Teyssedre G., Villeneuve-Faure C., Influence of dielectric layer thickness on charge injection, accumulation and transport phenomena in thin silicon oxynitride layers: A nanoscale study. Nanotechnology 32, 065706 (2021). PubMed
Benjelloun D., Bonnet J. P., Doumerc J. P., Launey J. C., Onillon M., Anisotropy in the electrical properties of zirconium-doped a-Fe2O3 single crystals. Mat. Chem. Phys. 20, 1–12 (1988).
Nakau T., Electrical conductivity of a-Fe2O3. J. Phys. Soc. Jap. 15, 727 (1960).
Tian C. M., Li W.-W., Lin Y. M., Yang Z. Z., Wang L., Du Y. G., Xiao H. Y., Qiao L., Zhang J. Y., Chen L., Qi D.-C., MacManus-Driscoll J. L., Zhang K. H. L., Electronic structure, optical properties, and photoelectrochemical activity of Sn-doped Fe2O3 thin films. J. Phys. Chem. C 124, 12548–12558 (2020).
Sanchez C., Sieber K., Somorjai G., The photoelectrochemistry of niobium doped α-Fe2O3. J. Electroanal. Chem. Interfacial Electrochem. 252, 269–290 (1988).
Zhou Z., Long R., Prezhdo O. V., Why silicon doping accelerates electron polaron diffusion in hematite. J. Am. Chem. Soc. 141, 20222–20233 (2019). PubMed
Benjelloun D., Bonnet J.-P., Dordor P., Launay J.-C., Onillon M., Hagenmuller P., Anisotropie des propriétés électriques de monocristaux de Fe203 dopés au nickel. Rev. de Chemie Minerale 21, 781 (1984).
Liu H., Wang A., Zhang P., Ma C., Chen C., Liu Z., Zhang Y.-Q., Feng B., Cheng P., Zhao J., Chen L., Wu K., Atomic-scale manipulation of single-polaron in a two-dimensional semiconductor. Nat. Commun. 14, 3690 (2023). PubMed PMC
Cai M., Miao M.-P., Liang Y., Jiang Z., Liu Z.-Y., Zhang W.-H., Liao X., Zhu L.-F., West D., Zhang S., Fu Y.-S., Manipulating single excess electrons in monolayer transition metal dihalide. Nat. Commun. 14, 3691 (2023). PubMed PMC
Yim C. M., Watkins M. B., Wolf M. J., Pang C. L., Hermansson K., Thornton G., Engineering polarons at a metal oxide surface. Phys. Rev. Lett. 117, 116402 (2016). PubMed
Setvin M., Franchini C., Hao X., Schmid M., Janotti A., Kaltak M., C. G. V. d. Walle, G. Kresse, U. Diebold, A direct view at excess electrons in TiO2 rutile and anatase. Phys. Rev. Lett. 113, 086402 (2014). PubMed
Gerhold S., Riva M., Yildiz B., Schmid M., Diebold U., Adjusting island density and morphology of the SrTiO3(110)-(4 × 1) surface: Pulsed laser deposition combined with scanning tunneling microscopy. Surf. Sci. 651, 76–83 (2016).
Franceschi G., Schmid M., Diebold U., Riva M., Reconstruction changes drive surface diffusion and determine the flatness of oxide surfaces. J. Vac. Sci. Technol. A 40, 023206 (2022).
Huber F., Giessibl F. J., Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017). PubMed
W. Greiner, Classical Electrodynamics (Springer, 1998).
Nadler B., Hollerbach U., Eisenberg R. S., Dielectric boundary force and its crucial role in gramicidin. Phys. Rev. E 68, 021905 (2003). PubMed
Kresse G., Furthmuller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. E 59, 1758–1775 (1999).
Krukau A. V., Vydrov O. A., Izmaylov A. F., Scuseria G. E., Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). PubMed
Adelstein N., Neaton J. B., Asta M., Jonghe L. C. D., Density functional theory based calculation of small-polaron mobility in hematite. Phys. Rev. B 89, 245115 (2014).
Smart T. J., Ping Y., Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations. J. Phys. Cond. Matt. 29, 394006 (2017). PubMed
Ahart C. S., Blumberger J., Rosso K. M., Polaronic structure of excess electrons and holes for a series of bulk iron oxides. Phys. Chem. Chem. Phys. 22, 10699–10709 (2020). PubMed
Ansari N., Ulman K., Camellone M. F., Seriani N., Gebauer R., Piccinin S., Hole localization in Fe2O3 from density functional theory and wave-function-based methods. Phys. Rev. Mater. 1, 035404 (2017).
Deskins N., Dupuis M., Electron transport via polaron hopping in bulk TiO2: A density functional theory characterization. Phys. Rev. E 75, 195212 (2007).
Franceschi G., Kraushofer F., Meier M., Parkinson G. S., Schmid M., Diebold U., Riva M., A model system for photocatalysis: Ti-Doped α-Fe2O3(1102) single-crystalline films. Chem. Mater. 32, 3753–3764 (2020). PubMed PMC
Lucier A. S., Mortesen H., Sun Y., Grutter P., Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy. Phys. Rev. B 72, 235420 (2005).
Setvin M., Javorsky J., Turcinkova D., Matolinova I., Sobotik P., Kocan P., Ostadal I., Ultrasharp tungsten tips—Characterization and nondestructive cleaning. Ultramicroscopy 113, 152–157 (2012).
M. N. O. Sadiku, R. C. Garcia, Monte Carlo floating random walk solution of Poisson’s equation, in Southeastcon 1993 Proceedings (IEEE, 1993).
Kuznetsov A., Sipin A., Monte Carlo algorithms for the extracting of electrical capacitance. Mathematics 9, 2922 (2021).
Papaioannou J. C., Patermarakis G. S., Karayianni H. S., Electron hopping mechanism in hematite (α-Fe2O3). J. Phys. Chem. Sol. 66, 839–844 (2005).
Reticcioli M., Wang Z., Schmid M., Wrana D., Boatner L. A., Diebold U., Setvin M., Franchini C., Competing electronic states emerging on polar surfaces. Nat. Commun. 13, 4311 (2022). PubMed PMC
Giannini S., Blumberger J., Charge transport in organic semiconductors: The perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 55, 819–830 (2022). PubMed PMC
Onari S., Arai T., Kudo K., Infrared lattice vibrations and dielectric dispersion in α−Fe2O3. Phys. Rev. B 16, 1717–1721 (1977).
Lunt R. A., Jackson A. J., Walsh A., Dielectric response of Fe2O3 crystals and thin films. Chem. Phys. Lett. 586, 67–69 (2013).
Lauhon L. J., Ho W., Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 85, 4566–4569 (2000). PubMed
Campbell C. T., Sellers R. V., Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem. Rev. 113, 4106–4135 (2013). PubMed
Grave E. D., Bowen L. H., Amarasiriwardena D. D., Vandenberghe R. E., 57Fe Mosbauer effect study of highly substituted aluminum hematites: Determination of the magnetic hyperfine field distributions. J. Magnet. Magnetic Mater. 72, 129–140 (1988).
Sobotik P., Kocan P., Ostadal I., Direct observation of Ag intercell hopping on the Si(111)-(7 x 7) surface. Surf. Sci. 537, L442–L446 (2003).
S. V. Divinski, A. Pokoev, N. Esakkiraja, A. Paul, A mystery of “sluggish diffusion” in high-entropy alloys: the truth or a myth? ArXiv: 1804.03465 [cond-mat.mtrl-sci] (2018).
Kluge M., Schober H. R., Diffusion and jump-length distribution in liquid and amorphous Cu33Zr67. Phys. Rev. B 70, 224209 (2004).