Improvements in no evidence of disease activity with ublituximab vs. teriflunomide in the ULTIMATE phase 3 studies in relapsing multiple sclerosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39512280
PubMed Central
PMC11542255
DOI
10.3389/fneur.2024.1473284
Knihovny.cz E-zdroje
- Klíčová slova
- BRIUMVI, anti-CD20, disability, disease activity, disease-modifying therapy, multiple sclerosis, no evidence of disease activity, relapse,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ublituximab is a novel anti-CD20 monoclonal antibody glycoengineered for enhanced antibody-dependent cellular cytotoxicity. The phase 3 ULTIMATE I and II studies showed significant improvements in annualized relapse rate, total number of gadolinium-enhancing (Gd+) T1 lesions, and total number of new or enlarging T2 at Week 96, as well as improvement in the proportion of participants with no evidence of disease activity (NEDA) from Weeks 24-96 with ublituximab vs. teriflunomide. METHODS: In ULTIMATE I (NCT03277261; www.clinicaltrials.gov) (N = 549) and II (NCT03277248; www.clinicaltrials.gov) (N = 545), participants with relapsing multiple sclerosis received ublituximab 450 mg intravenous infusion every 24 weeks (following Day 1 infusion of 150 mg and Day 15 infusion of 450 mg) or teriflunomide 14 mg oral once daily for 96 weeks. Pooled post hoc analyses evaluated NEDA by treatment epoch and participant subtype: age ( ≤ 38 or >38 years), early or later disease (<3 or ≥3 years following diagnosis), treatment history (treatment naïve or previously treated), 0 or ≥1 Gd+ T1 lesions at baseline, and Expanded Disability Status Scale score ≤ 3.5 or >3.5 at baseline. NEDA was defined as no confirmed relapses, no Gd+ T1 lesions, no new or enlarging T2 lesions, and no disability progression confirmed for ≥12 weeks. RESULTS: NEDA rates in the ublituximab vs. teriflunomide cohorts by treatment epoch were: Weeks 0-96, 44.6% vs. 12.4% (3.6 × improvement); Weeks 24-96 (re-baselined), 82.1% vs. 22.5% (3.6 × improvement); and Weeks 48-96 (re-baselined), 88.2% vs. 30.4% (2.9 × improvement) (all p < 0.0001). The primary driver of disease activity in ublituximab-treated participants was new or enlarging T2 lesions during Weeks 0-24. 41.8% of ublituximab-treated participants who had evidence of disease activity in the first year (Weeks 0-48) experienced NEDA in the second year of treatment (Weeks 48-96) compared with 17.3% of teriflunomide-treated participants. At Weeks 24-96 (re-baselined), rates of NEDA were significantly higher with ublituximab than teriflunomide in all participant subtypes (all p < 0.0001). CONCLUSIONS: ULTIMATE I and II pooled post hoc analyses demonstrated a consistent NEDA benefit among ublituximab-treated participants across treatment epochs and key participant subpopulations.
Beckman Center for Molecular Medicine Stanford University Stanford CA United States
Brain and Mind Centre University of Sydney Sydney NSW Australia
Center of Neurology Łódź Poland
Consultants in Neurology Northbrook IL United States
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Department of Neurology University of Colorado Aurora CO United States
Department of Neurology University of South Florida Tampa FL United States
Department of Neurology University of Warmia and Mazury Olsztyn Poland
Hope Neurology Knoxville TN United States
Medical University of Vienna Vienna Austria
Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Freedman MS. Multiple sclerosis therapeutic strategies: use second-line agents as first-line agents when time is of the essence. Neurol Clin Pract. (2011) 1:66–8. 10.1212/CPJ.0b013e31823cc2c2 PubMed DOI PMC
Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. (2015) 4:329–33. 10.1016/j.msard.2015.04.006 PubMed DOI
Lu G, Beadnall HN, Barton J, Hardy TA, Wang C, Barnett MH. The evolution of “no evidence of disease activity” in multiple sclerosis. Mult Scler Relat Disord. (2018) 20:231–8. 10.1016/j.msard.2017.12.016 PubMed DOI
Newsome SD, Binns C, Kaunzner UW, Morgan S, Halper J. No evidence of disease activity (NEDA) as a clinical assessment tool for multiple sclerosis: clinician and patient perspectives [narrative review]. Neurol Ther. (2023) 12:1909–35. 10.1007/s40120-023-00549-7 PubMed DOI PMC
Buron MD, Chalmer TA, Sellebjerg F, Barzinji I, Christensen JR, Christensen MK, et al. . Initial high-efficacy disease-modifying therapy in multiple sclerosis: a nationwide cohort study. Neurology. (2020) 95:e1041–e51. 10.1212/wnl.0000000000010135 PubMed DOI
Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, et al. . Clinical outcomes of escalation vs. early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. (2019) 76:536–41. 10.1001/jamaneurol.2018.4905 PubMed DOI PMC
Hauser SL, Cree BAC. Treatment of multiple sclerosis: a review. Am J Med. (2020) 133:1380–90.e2. 10.1016/j.amjmed.2020.05.049 PubMed DOI PMC
Spelman T, Magyari M, Piehl F, Svenningsson A, Rasmussen PV, Kant M, et al. . Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing-remitting multiple sclerosis: data from 2 different national strategies. JAMA Neurol. (2021) 78:1197–204. 10.1001/jamaneurol.2021.2738 PubMed DOI PMC
Margoni M, Preziosa P, Filippi M, Rocca MA. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. (2022) 269:1316–34. 10.1007/s00415-021-10744-x PubMed DOI PMC
He A, Merkel B, Brown JWL, Zhovits Ryerson L, Kister I, Malpas CB, et al. . Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. (2020) 19:307–16. 10.1016/s1474-4422(20)30067-3 PubMed DOI
Selmaj K, Cree BAC, Barnett M, Thompson A, Hartung HP. Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol. (2024) 271:105–15. 10.1007/s00415-023-11969-8 PubMed DOI PMC
De Stefano N, Stromillo ML, Giorgio A, Battaglini M, Bartolozzi ML, Amato MP, et al. . Long-term assessment of no evidence of disease activity in relapsing-remitting MS. Neurology. (2015) 85:1722–3. 10.1212/wnl.0000000000002105 PubMed DOI
Havrdova E, Galetta S, Hutchinson M, Stefoski D, Bates D, Polman CH, et al. . Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the natalizumab safety and efficacy in relapsing-remitting multiple sclerosis (AFFIRM) study. Lancet Neurol. (2009) 8:254–60. 10.1016/s1474-4422(09)70021-3 PubMed DOI
Havrdova E, Giovannoni G, Stefoski D, Forster S, Umans K, Mehta L, et al. . Disease-activity-free status in patients with relapsing-remitting multiple sclerosis treated with daclizumab high-yield process in the SELECT study. Mult Scler. (2014) 20:464–70. 10.1177/1352458513502113 PubMed DOI
Parks NE, Flanagan EP, Lucchinetti CF, Wingerchuk DM. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J Neurol Sci. (2017) 383:31–4. 10.1016/j.jns.2017.10.015 PubMed DOI
Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T, et al. . Inclusion of brain volume loss in a revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. (2016) 22:1297–305. 10.1177/1352458515616701 PubMed DOI PMC
Smith AL, Cohen JA, Hua LH. Therapeutic targets for multiple sclerosis: current treatment goals and future directions. Neurotherapeutics. (2017) 14:952–60. 10.1007/s13311-017-0548-5 PubMed DOI PMC
Rotstein D, Solomon JM, Sormani MP, Montalban X, Ye XY, Dababneh D, et al. . Association of no evidence of disease activity with no long-term disability progression in multiple sclerosis: a systematic review and meta-analysis. Neurology. (2022) 99:e209–e20. 10.1212/wnl.0000000000200549 PubMed DOI
Babiker HM, Glode AE, Cooke LS, Mahadevan D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin Investig Drugs. (2018) 27:407–12. 10.1080/13543784.2018.1459560 PubMed DOI
de Romeuf C, Dutertre CA, Le Garff-Tavernier M, Fournier N, Gaucher C, Glacet A, et al. . Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgammaRIIIA/CD16. Br J Haematol. (2008) 140:635–43. 10.1111/j.1365-2141.2007.06974.x PubMed DOI
Le Garff-Tavernier M, Herbi L, de Romeuf C, Nguyen-Khac F, Davi F, Grelier A, et al. . Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia. (2014) 28:230–3. 10.1038/leu.2013.240 PubMed DOI
Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. . Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A. (2011) 108:12669–74. 10.1073/pnas.1108455108 PubMed DOI PMC
Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem. (2021) 297:100826. 10.1016/j.jbc.2021.100826 PubMed DOI PMC
Fox E, Lovett-Racke AE, Gormley M, Liu Y, Petracca M, Cocozza S, et al. . A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler. (2021) 27:420–9. 10.1177/1352458520918375 PubMed DOI PMC
Huang D Alvarez E Miskin H Lee L and Foley J . Ublituximab, a novel, glycoengineered Anti-CD20 monoclonal antibody (mAb), demonstrates enhanced antibody-dependent cellular cytotoxicity (ADCC) relative to Other Anti-CD20 mAbs (P7-3.011). Neurology (2023) 100 (Suppl 2). 10.1212/WNL.0000000000203085 DOI
Alvarez E, Steinman L, Fox EJ, Hartung H-P, Qian P, Wray S, et al. . Reduced disease progression with ublituximab vs teriflunomide in the phase 3 ULTIMATE I and II studies in relapsing multiple sclerosis. In: Consortium of Multiple Sclerosis Centers Annual Meeting. National Harbor, MD: Oral Presentation DMT03.
Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. . B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. (2008) 358:676–88. 10.1056/NEJMoa0706383 PubMed DOI
Ocrevus (ocrelizumab). Prescribing Information. Washington, DC: Genentech, Inc. (2024).
Rituxan (rituximab). Prescribing Information. Washington, DC: Genentech, Inc. (2021).
BRIUMVI (ublituximab-xiiy). Prescribing Information. Morrisville, NC: TG Therapeutics, Inc. (2022).
Steinman L, Fox E, Hartung H-P, Alvarez E, Qian P, Wray S, et al. . Ublituximab vs. teriflunomide in relapsing multiple sclerosis. N Engl J Med. (2022) 387:704–14. 10.1056/NEJMoa2201904 PubMed DOI
Hauser SL, Kappos L, Arnold DL, Bar-Or A, Brochet B, Naismith RT, et al. . Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology. (2020) 95:e1854–e67. 10.1212/wnl.0000000000010376 PubMed DOI PMC
Arnold DL, Calabresi PA, Kieseier BC, Sheikh SI, Deykin A, Zhu Y, et al. . Effect of peginterferon beta-1a on MRI measures and achieving no evidence of disease activity: results from a randomized controlled trial in relapsing-remitting multiple sclerosis. BMC Neurol. (2014) 14:240. 10.1186/s12883-014-0240-x PubMed DOI PMC
Havrdová E, Arnold DL, Bar-Or A, Comi G, Hartung HP, Kappos L, et al. . No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult Scler J Exp Transl Clin. (2018) 4:2055217318760642. 10.1177/2055217318760642 PubMed DOI PMC
Bose D, Ravi R, Maurya M, Pushparajan L, Konwar M. Impact of disease-modifying therapies on MRI outcomes in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. Mult Scler Relat Disord. (2022) 61:103760. 10.1016/j.msard.2022.103760 PubMed DOI
Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. . Ofatumumab vs. teriflunomide in multiple sclerosis. N Engl J Med. (2020) 383:546–57. 10.1056/NEJMoa1917246 PubMed DOI
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. . Ocrelizumab vs. interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. (2017) 376:221–34. 10.1056/NEJMoa1601277 PubMed DOI
Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. . Ofatumumab vs. teriflunomide in relapsing multiple sclerosis: analysis of no evidence of disease activity (NEDA-3) from the ASCLEPIOS I and II trials. Int J MS Care. (2020) 22:85–6. 10.7224/1537-2073-22.s2.1 PubMed DOI
Alonso RN, Eizaguirre MB, Cohen L, Quarracino C, Silva B, Pita MC, et al. . Upper limb dexterity in patients with multiple sclerosis: an important and underrated morbidity. Int J MS Care. (2021) 23:79–84. 10.7224/1537-2073.2019-083 PubMed DOI PMC
Pandit L. No evidence of disease activity (NEDA) in multiple sclerosis - shifting the goal posts. Ann Indian Acad Neurol. (2019) 22:261–3. 10.4103/aian.AIAN_159_19 PubMed DOI PMC
Giovannoni G, Tomic D, Bright JR, Havrdová E. “No evident disease activity”: the use of combined assessments in the management of patients with multiple sclerosis. Mult Scler. (2017) 23:1179–87. 10.1177/1352458517703193 PubMed DOI PMC
Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, et al. . Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur J Neurol. (2017) 24:703–12. 10.1111/ene.13274 PubMed DOI
Stangel M, Penner IK, Kallmann BA, Lukas C, Kieseier BC. Towards the implementation of 'no evidence of disease activity' in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord. (2015) 8:3–13. 10.1177/1756285614560733 PubMed DOI PMC
De Stefano N, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M, et al. . Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. (2016) 87:93–9. 10.1136/jnnp-2014-309903 PubMed DOI PMC
De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, et al. . Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. (2014) 28:147–56. 10.1007/s40263-014-0140-z PubMed DOI
Fisher E, Rudick RA, Cutter G, Baier M, Miller D, Weinstock-Guttman B, et al. . Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler. (2000) 6:373–7. 10.1177/135245850000600602 PubMed DOI
Fisher E, Rudick RA, Simon JH, Cutter G, Baier M, Lee JC, et al. . Eight-year follow-up study of brain atrophy in patients with MS. Neurology. (2002) 59:1412–20. 10.1212/01.wnl.0000036271.49066.06 PubMed DOI
Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP, et al. . Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. (2013) 84:1082–91. 10.1136/jnnp-2012-304094 PubMed DOI
University University of California San Francisco MS-EPIC Team. Cree BAC, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E, et al. . Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. (2016) 80:499–510. 10.1002/ana.24747 PubMed DOI PMC
Prosperini L, Mancinelli C, Haggiag S, Cordioli C, De Giglio L, De Rossi N, et al. . Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. (2020) 91:271–7. 10.1136/jnnp-2019-322348 PubMed DOI
Sormani MP, Gasperini C, Romeo M, Rio J, Calabrese M, Cocco E, et al. . Assessing response to interferon-β in a multicenter dataset of patients with MS. Neurology. (2016) 87:134–40. 10.1212/wnl.0000000000002830 PubMed DOI
Tsantes E, Curti E, Collura F, Bazzurri V, Fiore A, Granella F. Five- and seven-year prognostic value of new effectiveness measures (NEDA, MEDA and six-month delayed NEDA) in relapsing-remitting multiple sclerosis. J Neurol Sci. (2020) 414:116827. 10.1016/j.jns.2020.116827 PubMed DOI
Río J, Rovira À, Tintoré M, Otero-Romero S, Comabella M, Vidal-Jordana Á, et al. . Disability progression markers over 6-12 years in interferon-β-treated multiple sclerosis patients. Mult Scler. (2018) 24:322–30. 10.1177/1352458517698052 PubMed DOI
ClinicalTrials.gov
NCT03277261, NCT03277248