Abstraction-based segmental simulation of reaction networks using adaptive memoization
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
378803395
Deutsche Forschungsgemeinschaft
378803395
Deutsche Forschungsgemeinschaft
787367
ERC Advanced Grant
GJ20-02328Y
Grantová Agentura České Republiky
GJ20-02328Y
Grantová Agentura České Republiky
GJ20-02328Y
Grantová Agentura České Republiky
internal project FIT-S-23-8151,
Fakulta Informačních Technologií, Vysoké Učení Technické v Brně
MUNI/I/1757/2021
Grant Agency of Masaryk University
PubMed
39516723
PubMed Central
PMC11549863
DOI
10.1186/s12859-024-05966-5
PII: 10.1186/s12859-024-05966-5
Knihovny.cz E-resources
- Keywords
- Memoization, Population abstraction, Reaction networks, Stochastic simulation,
- MeSH
- Algorithms * MeSH
- Models, Biological MeSH
- Computer Simulation * MeSH
- Stochastic Processes * MeSH
- Synthetic Biology methods MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time. RESULTS: We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently. CONCLUSION: We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.
Department of Computer Science Technical University of Munich Garching b Munich Germany
Faculty of Informatics Masaryk University Brno Czech Republic
Faculty of Information Technology Brno University of Technology Brno Czech Republic
See more in PubMed
Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–6. PubMed
Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81(25):2340–81.
Cao Y, Gillespie DT, Petzold LR. Efficient step size selection for the tau-leaping simulation method. J Chem Phys. 2006;124(4):044109. PubMed
Lester C, Yates CA, Giles MB, Baker RE. An adaptive multi-level simulation algorithm for stochastic biological systems. J Chem Phys. 2015;142(2):024113. PubMed
Goutsias J. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J Chem Phys. 2005;122(18):184102. PubMed
Ganguly A, Altintan D, Koeppl H. Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms. Multiscale Model Simul. 2015;13(4):1390–419.
Hepp B, Gupta A, Khammash M. Adaptive hybrid simulations for multiscale stochastic reaction networks. J Chem Phys. 2015;142(3):034118. PubMed
Cairoli F, Carbone G, Bortolussi L. Abstraction of markov population dynamics via generative adversarial nets. In: Computational Methods in Systems Biology (CMSB), 2021;19–35. Springer
Gupta A, Schwab C, Khammash M. DeepCME: a deep learning framework for computing solution statistics of the chemical master equation. PLoS Comput Biol. 2021;17(12):1009623. PubMed PMC
Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. StochKit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics. 2011;27(17):2457–8. PubMed PMC
Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. COPASI - a COmplex PAthway SImulator. Bioinformatics. 2006;22(24):3067–74. PubMed
Maarleveld TR, Olivier BG, Bruggeman FJ. Stochpy: a comprehensive, user-friendly tool for simulating stochastic biological processes. PLoS ONE. 2013;8(11):79345. PubMed PMC
Myers CJ, Barker N, Jones K, Kuwahara H, Madsen C, Nguyen N-PD. ibiosim: a tool for the analysis and design of genetic circuits. Bioinformatics. 2009;25(21):2848–9. PubMed
Kazeroonian A, Frohlich F, Raue A, Theis FJ, Hasenauer J. Cerena: Chemical reaction network analyzer: a toolbox for the simulation and analysis of stochastic chemical kinetics. PLoS ONE. 2016;11(1):1–15. PubMed PMC
Mauch S, Stalzer M. Efficient formulations for exact stochastic simulation of chemical systems. IEEE/ACM Trans Comput Biol Bioinf. 2009;8(1):27–35. PubMed
Klingbeil G, Erban R, Giles M, Maini PK. Stochsimgpu: parallel stochastic simulation for the systems biology toolbox 2 for matlab. Bioinformatics. 2011;27(8):1170–1. PubMed
Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G. cutauleaping: a gpu-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE. 2014;9(3):91963. PubMed PMC
Munsky B, Khammash M. The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys. 2006;124:044104. PubMed
Zhang J, Watson LT, Cao Y. Adaptive aggregation method for the chemical master equation. Int J Comput Biol Drug Des. 2009;2(2):134–48. PubMed
Hasenauer J, Wolf V, Kazeroonian A, Theis FJ. Method of conditional moments (MCM) for the chemical master equation. J Math Biol. 2013;1–49. PubMed
Abate A, Andriushchenko R, Češka M, Kwiatkowska M. Adaptive formal approximations of markov chains. Perform Eval. 2021;148:102207.
Singh A. Stochastic dynamics of predator-prey interactions. PLoS ONE. 2021;16(8):1–14. 10.1371/journal.pone.0255880. PubMed PMC
Helfrich M, Češka M, Křetínský J, Martiček Š. Abstraction-based segmental simulation of chemical reaction networks. In: Computational Methods in Systems Biology (CMSB), 2022;41–60. Springer.
Sukys A, Öcal K, Grima R. Approximating solutions of the chemical master equation using neural networks. Iscience 2022;25(9) PubMed PMC
Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol. 2008;254(1):178–96. PubMed PMC
Chellaboina V, Bhat SP, Haddad WM, Bernstein DS. Modeling and analysis of mass-action kinetics. IEEE Control Syst Mag. 2009;29(4):60–78.
Soloveichik D, Seelig G, Winfree E. DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci USA. 2010;107(12):5393–8. PubMed PMC
Gillespie DT. A rigorous derivation of the chemical master equation. Physica A. 1992;188(1–3):404–25.
Lefever R, Nicolis G. Chemical instabilities and sustained oscillations. J Theor Biol. 1971;30(2):267–84. PubMed
Madsen C, Myers CJ, Roehner N, Winstead C, Zhang Z. Utilizing stochastic model checking to analyze genetic circuits. In: Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2012;379–386. IEEE.
Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81(25):2340–61.
Robinson JT, Devarakonda MV. Data cache management using frequency-based replacement. In: Conference on Measurement and Modeling of Computer Systems, 1990;134–142. Association for Computing Machinery.
Srivastava R, You L, Summers J, Yin J. Stochastic vs. deterministic modeling of intracellular viral kinetics. J Theor Biol. 2002;218(3):309–21. PubMed
Burrage K, Tian T, Burrage P. A multi-scaled approach for simulating chemical reaction systems. Prog Biophys Mol Biol. 2004;85(2–3):217–34. PubMed
Češka M, Chau C, Křetínský J. SeQuaiA: A scalable tool for semi-quantitative analysis of chemical reaction networks. In: Computer Aided Verification (CAV), 2020;653–666. Springer.
Cao Y, Li H, Petzold L. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J Chem Phys. 2004;121(9):4059–67. PubMed
McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior. Comput Biol Chem. 2006;30(1):39–49. PubMed
Rao CV, Arkin AP. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. J Chem Phys. 2003;118(11):4999–5010.
Cao Y, Gillespie DT, Petzold LR. The slow-scale stochastic simulation algorithm. J Chem Phys. 2005;122(1):014116. PubMed
Engblom S. Computing the moments of high dimensional solutions of the master equation. Appl Math Comput. 2006;180(2):498–515.
Van Kampen NG. Stochastic Processes in Physics and Chemistry vol. 1, Elsevier 1992.
Ethier SN, Kurtz TG. Markov Processes - Characterization and Convergence, vol. 282. Wiley; 2009.
Gillespie DT. The chemical Langevin equation. J Chem Phys. 2000;113(1):297–306.
Feret J, Salazar A. A generic framework to coarse-grain stochastic reaction networks by abstract interpretation. In: Verification, Model Checking, and Abstract Interpretation (VMCAI), 2023;228–251. Springer
Cairoli F, Anselmi F, d’Onofrio A, Bortolussi L. Generative abstraction of markov population processes. Theoret Comput Sci. 2023;977:114169.
Repin D, Petrov T. Automated deep abstractions for stochastic chemical reaction networks. Inf Comput. 2021;281:104788.
Cardelli L, Csikász-Nagy A. The cell cycle switch computes approximate majority. Scientific reports 2012;2. PubMed PMC
Lakin MR, Youssef S, Polo F, Emmott S, Phillips A. Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics. 2011;27(22):3211–3. 10.1093/bioinformatics/btr543. PubMed PMC
Wang B, Thachuk C, Ellington AD, Winfree E, Soloveichik D. Effective design principles for leakless strand displacement systems. Proc Natl Acad Sci. 2018;115(52):12182–91. PubMed PMC
Tourigny DS, Goldberg AP, Karr JR. Simulating single-cell metabolism using a stochastic flux-balance analysis algorithm. Biophys J. 2021;120(23):5231–42. PubMed PMC