Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals

. 2024 Nov 12 ; 11 (1) : 1221. [epub] 20241112

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39532912

Grantová podpora
FIT-S-23-8278 Vysoké Učení Technické v Brně (Brno University of Technology)

Odkazy

PubMed 39532912
PubMed Central PMC11557825
DOI 10.1038/s41597-024-03991-w
PII: 10.1038/s41597-024-03991-w
Knihovny.cz E-zdroje

Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.

Zobrazit více v PubMed

Baratta, A. & Colletta, T. A Roman viaduct-bridge in Campania: History, structure and maintenance (CRC Press, 2020).

Bernard, C. Lectures on the phenomena of life common to animals and plants (Thomas, Springfield, Ill, 1974).

Cannon, W. B. Organization for physiological homeostasis. Physiological Reviews9, 399–431, 10.1152/physrev.1929.9.3.399 (1929).

CANNON, W. B. “voodoo” death. American Anthropologist44, 169–181, 10.1525/aa.1942.44.2.02a00010 (1942). PubMed PMC

Hansen, J. H. L. & Clements, M. A. Evaluation of speech under stress and emotional conditions. The Journal of the Acoustical Society of America82, S17–S18, 10.1121/1.2024686 (1987).

Yap, T. F. Speech production under cognitive load: Effects and classification. Ph.D. thesis, The University of New South Wales (2012).

Hansen, J. H. L. Susas ldc99s78. https://catalog.ldc.upenn.edu/LDC99S78 Last accessed on 2022-04-15 (1999).

Hansen, J. H. L. Susas transcripts ldc99t33. https://catalog.ldc.upenn.edu/LDC99T33 Last accessed on 2022-04-15 (1999).

Pešán, J. et al. Besst: Brno extended stress and speech database, 10.13164/data.fit.besst (2023).

Smeets, T. et al. Introducing the maastricht acute stress test (mast): A quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology37, 1998–2008, 10.1016/j.psyneuen.2012.04.012 (2012). PubMed

Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. Journal of Health and Social Behavior24, 385, 10.2307/2136404 (1983). PubMed

Pešán, J., Juřík, V., Kolářová, J., Chudý, P. & Černocký, J. Besst: An experimental protocol for collecting speech stress datasets for machine learning (2023). Manuscript submitted for publication.

Hedberg, A. G. Review of state-trait anxiety inventory. Professional Psychology3, 389–390, 10.1037/h0020743 (1972).

Likert, R. A Technique for the Measurement of Attitudes. No. nos. 136-165 in A Technique for the Measurement of Attitudes (Archives of Psychology, 1932).

Hart, S. G. & Staveland, L. E. Development of NASA-TLX (task load index): Results of empirical and theoretical research. In Advances in Psychology, 139–183, 10.1016/s0166-4115(08)62386-9 (Elsevier, 1988).

Smital, L., Marsanova, L., Smisek, R., Nemcova, A. & Vitek, M. Robust qrs detection using combination of three independent methods. In 2020 Computing in Cardiology, 1–4, 10.22489/CinC.2020.100 (2020).

Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. Signalplant: an open signal processing software platform. Physiological Measurement37, N38, 10.1088/0967-3334/37/7/N38 (2016). PubMed

Pešán, J., Kesiraju, S., Burget, L. & Černocký, J. Beyond the labels: Unveiling text-dependency in paralinguistic speech recognition datasets (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...