The influence of depth of sedation on motor evoked potentials monitoring in youth from 4 to 23 years old: preliminary data from a prospective observational study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39534220
PubMed Central
PMC11554488
DOI
10.3389/fmed.2024.1471450
Knihovny.cz E-zdroje
- Klíčová slova
- bispectral index, intraoperative neurophysiological monitoring, motor evoked potentials, remifentanil, scoliosis surgery, total intravenous anesthesia,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The influence of various levels of sedation depth on motor evoked potentials (MEP) reproducibility in youth is still unclear because of a lack of data. We tested the hypothesis that a deeper level of total intravenous anesthesia (TIVA) [bispectral index (BIS) 40 ± 5 compared to 60 ± 5] can affect surgeon-directed MEP and their interpretation in youths. METHODS: All patients received TIVA combined with propofol and remifentanil. TIVA was initially maintained at a BIS level of 60 ± 5. The sedation anesthesia was deepened to BIS level 40 ± 5 before the skin incision. MEP were recorded and interpreted at both BIS levels. The primary endpoint was to evaluate the effect of the depth of sedation on the MEP reproducibility directed and interpreted by the surgical team in each patient separately. The secondary endpoint was to compare the relativized MEP parameters (amplitude and latency) in percentage at various levels of sedation in each patient separately. We planned to enroll 150 patients. Due to the COVID-19 pandemic, we decided to analyze the results of the first 50 patients. RESULTS: The surgical team successfully recorded and interpreted MEP in all 50 enrolled patients in both levels of sedation depth without any clinical doubts. The MEP parameters at BIS level 40 ± 5, proportionally compared with the baseline, were latency 104% (97-110%) and the MEP amplitudes 84.5% (51-109%). CONCLUSION: Preliminary data predict that deeper sedation (BIS 40 ± 5) does not affect the surgical team's interpretation of MEP in youth patients. These results support that surgeon-directed MEP may be an alternative when neurophysiologists are unavailable.
Department of Simulation Medicine Faculty of Medicine Masaryk University Brno Czechia
Institute of Biostatistics and Analyses Faculty of Medicine Brno Czechia
Zobrazit více v PubMed
Gruenbaum BF, Gruenbaum SE. Neurophysiological monitoring during neurosurgery: anaesthetic considerations based on outcome evidence. Curr Opin Anaesthesiol. (2019) 32:580–4. doi: 10.1097/ACO.0000000000000753 PubMed DOI PMC
Nunes RR, Bersot CDA, Garritano JG. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr Opin Anaesthesiol. (2018) 31:532–8. doi: 10.1097/ACO.0000000000000645, PMID: PubMed DOI
Gunter A, Ruskin KJ. Intraoperative neurophysiologic monitoring: utility and anesthetic implications. Curr Opin Anaesthesiol. (2016) 29:539–43. doi: 10.1097/ACO.0000000000000374 PubMed DOI
Blevins K, Battenberg A, Beck A. Management of Scoliosis. Adv Pediatr Infect Dis. (2018) 65:249–66. doi: 10.1016/j.yapd.2018.04.013 PubMed DOI
Parr A, Askin G. Paediatric scoliosis: update on assessment and treatment. Aust J Gen Pract. (2020) 49:832–7. doi: 10.31128/AJGP-06-20-5477, PMID: PubMed DOI
Sheehan DD, Grayhack J. Pulmonary implications of pediatric spinal deformities. Pediatr Clin N Am. (2021) 68:239–59. doi: 10.1016/j.pcl.2020.09.012, PMID: PubMed DOI
Singleton M, Ghisi D, Memtsoudis S. Perioperative management in complex spine surgery. Minerva Anestesiol. (2022) 88:396–406. doi: 10.23736/S0375-9393.22.15933-X PubMed DOI
Bivona LJ, France J, Daly-Seiler CS, Burton DC, Dolan LA, Seale JJ, et al. . Spinal deformity surgery is accompanied by serious complications: report from the morbidity and mortality database of the Scoliosis Research Society from 2013 to 2020. Spine Deform. (2022) 10:1307–13. doi: 10.1007/s43390-022-00548-y PubMed DOI PMC
Halsey MF, Myung KS, Ghag A, Vitale MG, Newton PO, de Kleuver M. Neurophysiological monitoring of spinal cord function during spinal deformity surgery: 2020 SRS neuromonitoring information statement. Spine Deform. (2020) 8:591–6. doi: 10.1007/s43390-020-00140-2, PMID: PubMed DOI
Neira VM, Ghaffari K, Bulusu S, Moroz PJ, Jarvis JG, Barrowman N, et al. . Diagnostic accuracy of Neuromonitoring for identification of new neurologic deficits in pediatric spinal fusion surgery. Anesth Analg. (2016) 123:1556–66. doi: 10.1213/ANE.0000000000001503, PMID: PubMed DOI
Bidkar PU, Thakkar A, Manohar N, Rao KS. Intraoperative neurophysiological monitoring in paediatric neurosurgery. Int J Clin Pract. (2021) 75:e14160. doi: 10.1111/ijcp.14160 PubMed DOI
Nassef M, Splinter W, Lidster N, Al-Kalbani A, Nashed A, Ilton S, et al. . Intraoperative neurophysiologic monitoring in idiopathic scoliosis surgery: a retrospective observational study of new neurologic deficits. Can J Anaesth. (2021) 68:477–84. doi: 10.1007/s12630-020-01898-9, PMID: PubMed DOI
Magampa RS, Dunn R. Surgeon-directed transcranial motor evoked potential spinal cord monitoring in spinal deformity surgery. Bone Joint J. (2021) 103-B:547–52. doi: 10.1302/0301-620X.103B3.BJJ-2020-1278.R1, PMID: PubMed DOI
Strike SA, Hassanzadeh H, Jain A, Kebaish KM, Njoku DB, Becker D, et al. . Intraoperative Neuromonitoring in pediatric and adult spine deformity surgery. Clin Spine Surg. (2017) 30:E1174–81. doi: 10.1097/BSD.0000000000000388, PMID: PubMed DOI
Tsirikos AI, Duckworth AD, Henderson LE, Michaelson C. Multimodal intraoperative spinal cord monitoring during spinal deformity surgery: efficacy, diagnostic characteristics, and algorithm development. Med Princ Pract. (2020) 29:6–17. doi: 10.1159/000501256, PMID: PubMed DOI PMC
Chan A, Banerjee P, Lupu C, Bishop T, Bernard J, Lui D. Surgeon-directed Neuromonitoring in adolescent spinal deformity surgery safely assesses neurological function. Cureus. (2021) 13:e19843. doi: 10.7759/cureus.19843, PMID: PubMed DOI PMC
Sahinovic MM, Gadella MC, Shils J, Dulfer SE, Drost G. Anesthesia and intraoperative neurophysiological spinal cord monitoring. Curr Opin Anaesthesiol. (2021) 34:590–6. doi: 10.1097/ACO.0000000000001044, PMID: PubMed DOI
Nathan N, Tabaraud F, Lacroix F, Mouliès D, Viviand X, Lansade A, et al. . Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth. (2003) 91:493–7. doi: 10.1093/bja/aeg211, PMID: PubMed DOI
Thees C, Scheufler KM, Nadstawek J, Pechstein U, Hanisch M, Juntke R, et al. . Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol. (1999) 11:112–8. doi: 10.1097/00008506-199904000-00007 PubMed DOI
Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. (2004) 16:32–42. doi: 10.1097/00008506-200401000-00008, PMID: PubMed DOI
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. . Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. (2007) 335:806–8. doi: 10.1136/bmj.39335.541782.AD, PMID: PubMed DOI PMC
Wittschieber D, Vieth V, Domnick C, Pfeiffer H, Schmeling A. The iliac crest in forensic age diagnostics: evaluation of the apophyseal ossification in conventional radiography. Int J Legal Med. (2013) 127:473–9. doi: 10.1007/s00414-012-0763-x, PMID: PubMed DOI
Fuchs-Buder T, Romero CS, Lewald H, Lamperti M, Afshari A, Hristovska AM, et al. . Peri-operative management of neuromuscular blockade: a guideline from the European society of Anaesthesiology and intensive care. Eur J Anaesthesiol. (2023) 40:82–94. doi: 10.1097/EJA.0000000000001769 PubMed DOI
Langley MS, Propofol HRC. A review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anaesthetic. Drugs. (1988) 35:334–72. doi: 10.2165/00003495-198835040-00002 PubMed DOI
Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of Propofol. Clin Pharmacokinet. (2018) 57:1539–58. doi: 10.1007/s40262-018-0672-3, PMID: PubMed DOI PMC
Glass PSA, Gan TJ, Howell S. A review of the pharmacokinetics and pharmacodynamics of remifentanil. Anesth Analg. (1999) 89:7. doi: 10.1097/00000539-199910001-00003 PubMed DOI
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, et al. . European resuscitation council guidelines 2021: Paediatric life support. Resuscitation. (2021) 161:327–87. doi: 10.1016/j.resuscitation.2021.02.015, PMID: PubMed DOI
Hudec J, Prokopova T, Kosinova M, Gal R. Anesthesia and perioperative Management for Surgical Correction of neuromuscular scoliosis in children: a narrative review. J Clin Med. (2023) 12:3651. doi: 10.3390/jcm12113651, PMID: PubMed DOI PMC
Louvet N, Rigouzzo A, Sabourdin N, Constant I. Bispectral index under propofol anesthesia in children: a comparative randomized study between TIVA and TCI. Paediatr Anaesth. (2016) 26:899–908. doi: 10.1111/pan.12957, PMID: PubMed DOI
Denman WT, Swanson EL, Rosow D, Ezbicki K, Connors PD, Rosow CE. Pediatric evaluation of the bispectral index (BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in infants and children. Anesth Analg. (2000) 90:872–7. doi: 10.1213/00000539-200004000-00018, PMID: PubMed DOI
Ohtaki S, Akiyama Y, Kanno A, Noshiro S, Hayase T, Yamakage M, et al. . The influence of depth of anesthesia on motor evoked potential response during awake craniotomy. J Neurosurg. (2017) 126:260–5. doi: 10.3171/2015.11.JNS151291, PMID: PubMed DOI
Biscevic M, Sehic A, Krupic F. Intraoperative neuromonitoring in spine deformity surgery: modalities, advantages, limitations, medicolegal issues - surgeons' views. EFORT Open Rev. (2020) 5:9–16. doi: 10.1302/2058-5241.5.180032, PMID: PubMed DOI PMC
Olesnicky BL, D'Souza RJ, Jayram D, Kim O, Rehak A. The establishment of an anaesthetist-managed intraoperative neurophysiological monitoring service and initial outcome data. Anaesth Intensive Care. (2018) 46:74–8. doi: 10.1177/0310057X1804600111, PMID: PubMed DOI
Rath GP, Chandra NS. Intraoperative neurophysiological monitoring by anesthesiologists. Minerva Anestesiol. (2011) 77:857–8. PMID: PubMed
Xiang B, Jiao S, Zhang Y, Wang L, Yao Y, Yuan F, et al. . Effects of desflurane and sevoflurane on somatosensory-evoked and motor-evoked potential monitoring during neurosurgery: a randomized controlled trial. BMC Anesthesiol. (2021) 21:240. doi: 10.1186/s12871-021-01463-x, PMID: PubMed DOI PMC
Kawaguchi M, Iida H, Tanaka S, Fukuoka N, Hayashi H, Izumi S, et al. . A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth. (2020) 34:5–28. doi: 10.1007/s00540-019-02698-2, PMID: PubMed DOI
Grasso C, Marchesini V, Disma N. Applications and limitations of neuro-monitoring in Paediatric Anaesthesia and intravenous Anaesthesia: a narrative review. J Clin Med. (2021) 10:2639. doi: 10.3390/jcm10122639, PMID: PubMed DOI PMC
Rigouzzo A, Khoy-Ear L, Laude D, Louvet N, Moutard ML, Sabourdin N, et al. . EEG profiles during general anesthesia in children: a comparative study between sevoflurane and propofol. Paediatr Anaesth. (2019) 29:250–7. doi: 10.1111/pan.13579, PMID: PubMed DOI
Lee JM, Akeju O, Terzakis K, Pavone KJ, Deng H, Houle TT, et al. . A prospective study of age-dependent changes in Propofol-induced electroencephalogram oscillations in children. Anesthesiology. (2017) 127:293–306. doi: 10.1097/ALN.0000000000001717 PubMed DOI
Zhang JM, Wang F, Xin Z, Zi TT, Lv H. Treatment of different-aged children under bispectral index monitoring with intravenous anesthesia with propofol and remifentanil. Eur Rev Med Pharmacol Sci. (2015) 19:64–9. PMID: PubMed
Bannister CF, Brosius KK, Sigl JC, Meyer BJ, Sebel PS. The effect of bispectral index monitoring on anesthetic use and recovery in children anesthetized with sevoflurane in nitrous oxide. Anesth Analg. (2001) 92:877–81. doi: 10.1097/00000539-200104000-00015, PMID: PubMed DOI
Benuska J, Cembova N, Naser Y, Zabka M, Pasiar J, Svec A. Evaluation of a combination of waveform amplitude latency and decrease of waveform amplitude magnitude during spinal surgery in intraoperative neurophysiological monitoring of transcranial motor evoked potentials and its incidence on postoperative neurological deficit. Acta Chir Orthop Traumatol Cechoslov. (2020) 87:39–47. doi: 10.55095/achot2020/006, PMID: PubMed DOI
Kobayashi K, Ando K, Shinjo R, Ito K, Tsushima M, Morozumi M, et al. . A new criterion for the alarm point using a combination of waveform amplitude and onset latency in Br(E)-MsEP monitoring in spine surgery. J Neurosurg Spine. (2018) 29:435–41. doi: 10.3171/2018.3.SPINE171348, PMID: PubMed DOI
Polly DW, Jr, Rice K, Tamkus A. What is the frequency of intraoperative alerts during pediatric spinal deformity surgery using current Neuromonitoring methodology? A retrospective study of 218 surgical procedures. Neurodiagn J. (2016) 56:17–31. doi: 10.1080/21646821.2015.1119022, PMID: PubMed DOI
Lo YL, Dan YF, Tan YE, Nurjannah S, Tan SB, Tan CT, et al. . Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol. (2006) 18:211–4. doi: 10.1097/01.ana.0000211007.94269.50, PMID: PubMed DOI