Capital and income breeders among herbs: how relative biomass allocation into a storage organ relates to clonal traits, phenology and environmental gradients
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Programme for the Promotion of Prospective Human Resources - Postdocs (PPLZ)
LTT20003
Ministerstvo Školství, Mládeže a Tělovýchovy
Praemium Academiae
136 RVO 67985939
Akademie Věd České Republiky
PubMed
39535439
DOI
10.1111/nph.20260
Knihovny.cz E-zdroje
- Klíčová slova
- allometry, clonal organ, dominance, perennial, plant phenology,
- MeSH
- biomasa * MeSH
- buněčné klony MeSH
- druhová specificita MeSH
- kvantitativní znak dědičný MeSH
- listy rostlin metabolismus růst a vývoj MeSH
- oddenek růst a vývoj metabolismus MeSH
- roční období MeSH
- stonky rostlin růst a vývoj MeSH
- uhlík metabolismus MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík MeSH
Perennial herbs of seasonal climates invest carbon into belowground storage organs (e.g. rhizomes) to support growth when photosynthetic acquisition cannot cover demands. An alternative explanation interprets storage allocation as surplus carbon that is undeployable for growth when plants are limited by nutrients/water. We analysed relative investments to rhizomes to see to which of these explanations they align, and asked whether they scale with biomass of aboveground organs in individual species and whether clonal growth traits, phenology or environmental conditions explain investment among populations or species. We measured biomass of rhizomes, aboveground stems and leaves in 20 temperate herbaceous perennial species, each at two localities, establishing allometric relationships for pairs of organs. We correlated relative rhizome investment with clonal traits, environmental gradients and phenology, across species. For pairs of organs, biomass typically scales isometrically. Interspecific allocation differences are largely explained by phenology. Neither interspecific nor intraspecific differences were explained by clonal traits or environment. Storage organs of perennial herbs do not comprise deposition of carbon surplus, but receive greater allocation in capital breeders (early-flowering), than among income breeders (late-flowering) relying on acquisition during growing season. Capital and income breeders in plants deserve further examination of benefits/costs.
Zobrazit více v PubMed
Ashmun JW, Pitelka LF. 1985. Physiology and integration of ramets in clonal plants. In: Jackson JBC, Buss LW, Cook RE, eds. Population biology and evolution of clonal plants. New Haven, CT, USA: Yale University Press, 399–435.
Bartušková A, Lubbe FC, Qian J, Herben T, Klimešová J. 2022. The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. Functional Ecology 36: 314–325.
Beentje H. 2010. The Kew plant glossary. Richmond, UK: Royal Botanic Gardens, Kew.
Boettiger C, Coop G, Ralph P. 2012. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66: 2240–2251.
Bonnet X, Bradshaw D, Shine R. 1998. Capital versus income breeding: an ectothermic perspective. Oikos 83: 333–342.
Castorena M, Olson ME, Enquist BJ, Fajardo A. 2022. Toward a general theory of plant carbon economics. Trends in Ecology & Evolution 37: 829–837.
Chapin FS, Schulze E‐D, Mooney HA. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21: 423–447.
Chiariello N, Roughgarden J. 1984. Storage allocation in seasonal races of an annual plant: optimal versus actual allocation. Ecology 65: 1290–1301.
Chytrý M, Tichý L, Dřevojan P, Sádlo J, Zelený D. 2018. Ellenberg‐type indicator values for the Czech flora. Preslia 90: 83–103.
Collyer ML, Adams DC. 2018. rrpp: an R package for fitting linear models to high‐dimensional data using residual randomization. Methods in Ecology and Evolution 9: 1772–1779.
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. 2015. What lies beneath: belowground defense strategies in plants. Trends in Plant Science 20: 91–101.
Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology – a review. Basic and Applied Ecology 4: 493–506.
Diniz‐Filho JAF, de Sant'Ana CER, Bini LM. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247–1262.
Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa, 2nd edn, vol. 18. Scripta geobotanica. Göttingen, Germany: Goltze, 1–258.
Falster DS, Reich PB, Ellsworth DS, Wright IJ, Westoby M, Oleksyn J, Lee TD. 2012. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytologist 193: 409–419.
Fidelis A, Rosalem P, Zanzarini V, Camargos LS, Martins AR. 2019. From ashes to flowers: a savanna sedge initiates flowers 24 h after fire. Ecology 100: 1–4.
Fidelis A, Zirondi HL. 2021. And after fire, the Cerrado flowers: a review of post‐fire flowering in a tropical savanna. Flora 280: 151849.
Harris T, Klimeš A, Martínková J, Klimešová J. 2023. Herbs are not just small plants: what biomass allocation to rhizomes tells us about differences between trees and herbs. American Journal of Botany 110: e16202.
Hiltbrunner E, Arnaiz J, Körner C. 2021. Biomass allocation and seasonal non‐structural carbohydrate dynamics do not explain the success of tall forbs in short alpine grassland. Oecologia 197: 1063–1077.
Howard CC, Cellinese N. 2020. Tunicate bulb size variation in monocots explained by temperature and phenology. Ecology and Evolution 10: 2299–2309.
Huang L, Koubek T, Weiser M, Herben T. 2018. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. Journal of Ecology 106: 1621–1633.
Inouye DW. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89: 353–362.
Ives A, Dinnage R, Nell LA, Helmus M, Li D. 2020. phyr: model based phylogenetic analysis. R package v.1.1.0. [WWW document] URL https://CRAN.R‐project.org/package=phyr.
Janeček Š, Patáčová E, Klimešová J. 2014. Effects of fertilization and competition on plant biomass allocation and internal resources: does Plantago lanceolata follow the rules of economic theory? Folia Geobotanica 49: 49–64.
Jin Y, Qian H. 2019. v.phylomaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42: 1353–1359.
Jónsdóttir IS, Watson MA. 1997. Extensive physiological integration: an adaptive trait in resource‐poor environments. In: De Kroon H, van Groenendael J, eds. The ecology and evolution of clonal plants. Leiden, the Netherlands: Backhuys, 109–136.
Jönsson KI. 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78: 57–66.
Kaplan Z, Danihelka J, Chrtek J, Kirschner J, Kubát K, Štech M, Štěpánek J. 2019. Klíč ke květeně České republiky [Key to the flora of the Czech Republic], 2nd edn. Praha, Czech Republic: Academia.
Karlsson PS, Méndez M. 2005. The resource economy of plant reproduction. In: Reekie EG, Bazzaz FA, eds. Reproductive allocation in plants. Burlington, VT, USA: Elsevier Academic Press.
Kassambara A. 2022. ggcorrplot: visualization of a correlation matrix using ‘ggplot2’. R package v.0.1.4. [WWW document] URL https://CRAN.R‐project.org/package=ggcorrplot.
Kehrberger S, Holzschuh A. 2019. How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant? Scientific Reports 9: 15593.
Kindt R, Coe R. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi, Kenya: World Agroforestry Centre (ICRAF).
Kleijn D, Treier UA, Müller‐Schärer H. 2005. The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album. New Phytologist 166: 565–575.
Klimeš L, Klimešová J. 2000. Plant rarity and the type of clonal growth. Zeitschrift für Ökologie und Naturschutz 9: 43–52.
Klimešová J. 1994. The effects of timing and duration of floods on growth of young plants of Phalaris arundinacea L. and Urtica dioica L.: an experimental study. Aquatic Botany 48: 21–29.
Klimešová J, Danihelka J, Chrtek J, de Bello F, Herben T. 2017. CLO‐PLA: a database of clonal and bud‐bank traits of the Central European flora. Ecology 98: 1179.
Klimešová J, Doležal J, Sammul M. 2011. Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos 120: 1110–1120.
Klimešová J, Klimeš L. 2006. CLO‐PLA3: a database of clonal growth architecture of Central‐European plants. [WWW document] URL http://clopla.butbn.cas.cz [accessed 14 December 2022].
Klimešová J, Martínková J, Herben T. 2018. Horizontal growth: an overlooked dimension in plant trait space. Perspectives in Plant Ecology, Evolution and Systematics 32: 18–21.
Klimešová J, Sosnová M, Martínková J. 2007. Life‐history variation in the short‐lived herb Rorippa palustris: effect of germination date and injury timing. Plant Ecology 189: 237–246.
Klimešová J, Tackenberg O, Herben T. 2016. Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytologist 210: 13–17.
Kobe RK. 1997. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80: 226–233.
Legendre P. 2018. lmodel2: model II regression. R package v.1.7‐3. [WWW document] URL https://CRAN.R‐project.org/package=lmodel2.
Letten AD, Cornwell WK. 2015. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods in Ecology and Evolution 6: 439–444.
Lubbe FC, Bitomský M, Bartoš M, Marešová I, Martínková J, Klimešová J. 2023. Trash or treasure: rhizome conservation during drought. Functional Ecology 37: 2300–2311.
Lubbe FC, Klimešová J, Henry HAL. 2021. Winter belowground: changing winters and the perennating organs of herbaceous plants. Functional Ecology 35: 1627–1639.
Martínková J, Klimeš A, Klimešová J. 2020. Young clonal and non‐clonal herbs differ in growth strategy but not in aboveground biomass compensation after disturbance. Oecologia 193: 925–935.
McCarthy MC, Enquist BJ. 2007. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology 21: 713–720.
Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology 12: 84–96.
Moraes MG, de Carvalho MAM, Franco AC, Pollock CJ. 2016. Fire and drought: soluble carbohydrate storage and survival mechanisms in herbaceous plants from the Cerrado. Bioscience 66: 107–117.
Niinemets Ü. 2005. Key plant structural and allocation traits depend on relative age in the perennial herb Pimpinella saxifraga. Annals of Botany 96: 323–330.
Niklas KJ. 1994. Plant allometry: the scaling of form and process. Chicago, IL, USA: Chicago University Press.
Niklas KJ. 2004. Plant allometry: is there a grand unifying theory? Biological Reviews of the Cambridge Philosophical Society 79: 871–889.
Niklas KJ, Enquist BJ. 2002. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. American Naturalist 159: 482–497.
Niklas KJ, Hammond ST. 2019. On the interpretation of the normalization constant in the scaling equation. Frontiers in Ecology and Evolution 6: 212.
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens MHH, Szoecs E et al. 2022. vegan: community ecology package. R package v.2.6‐4. [WWW document] URL https://CRAN.R‐project.org/package=vegan.
Orme D, Freckleton RP, Thomas G, Petzold T, Fritz S, Isaac N, Pearse W. 2013. caper: comparative analyses of phylogenetics and evolution in R. Methods in Ecology and Evolution 3: 145–151.
Orthen B, Wehrmeyer A. 2004. Seasonal dynamics of non‐structural carbohydrates in bulbs and shoots of the geophyte Galanthus nivalis. Physiologia Plantarum 120: 529–536.
Ottaviani G, Molina‐Venegas R, Charles‐Dominique T, Chelli S, Campetella G, Canullo R, Klimešová J. 2020. The neglected belowground dimension of plant dominance. Trends in Ecology & Evolution 35: 763–766.
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.
Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ. 2007. Differences in freeze tolerance of Zoysia grasses: II. Carbohydrate and proline accumulation. Crop Science 47: 2170–2181.
Pinheiro J, Bates D, DebRoy S, Sarkar D. 2022. nlme: linear and nonlinear mixed effects models. R package v.3.1‐160. [WWW document] URL https://CRAN.R‐project.org/package=nlme.
Poorter H, Jagodzinski AM, Ruiz‐Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208: 736–749.
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193: 30–50.
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. 2020. Surplus carbon drives allocation and plant soil interactions. Trends in Ecology & Evolution 35: 1110–1118.
R Core Team. 2022. R: a language and environment for statistical computing, v.4.2.2. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 18 December 2022].
Schaffers A, Sýkora KV. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen 700 and soil reaction. Journal of Vegetation Science 11: 225–244.
Schnablová R, Bartušková A, Horčičková E, Šmarda P, Klimešová J, Herben T. 2024. Diversity and functional differentiation of renewal buds in temperate herbaceous plants. New Phytologist 244: 292–306.
Schnablová R, Huang L, Klimešová J, Šmarda P, Herben T. 2021. Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. New Phytologist 229: 620–630.
Smith RJ. 2009. Use and misuse of the reduced major axis for line‐fitting. American Journal of Biological Anthropology 140: 476–486.
Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302–314.
Tang Y, Horikoshi M, Li W. 2016. ggfortify: unified interface to visualize statistical result of popular R packages. The R Journal 8: 474–485.
Varpe Ø. 2017. Life history adaptations to seasonality. Integrative and Comparative Biology 57: 943–960.
Wamelink GWW, Dobben VJ, Berendse F. 2003. Validity of Ellenberg indicator values from 723 physico‐chemical field measurements. Journal of Vegetation Science 14: 619–620.
West G, Brown J, Enquist BJ. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400: 664–667.
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125–159.
Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York, NY, USA: Springer‐Verlag.
Zheng L, Ives AR, Garland T, Larget BR, Yu Y, Cao KF. 2009. New multivariate tests for phylogenetic signal and trait correlations applied to ecophysiological phenotypes of nine Manglietia species. Functional Ecology 23: 1059–1069.