Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1229422N
FWO, Fonds Wetenschappelijk Onderzoek-Vlaanderen
1SA2323N
FWO, Fonds Wetenschappelijk Onderzoek-Vlaanderen
SVV 260 635/ 2024
Ministry of Education, Youth and Sports of the Czech Republic
Charles University
FWO I006920N
FWO
CEP - Centrální evidence projektů
I003922N
FWO
CEP - Centrální evidence projektů
LM2023053
FWO
CEP - Centrální evidence projektů
EATRIS-CZ
European Union
HBC.2023.0736
Agentschap Innoveren en Ondernemen
European Commission
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
FWO I006920N
Fonds Wetenschappelijk Onderzoek
I003922N
Fonds Wetenschappelijk Onderzoek
PubMed
39558788
DOI
10.1002/adhm.202402256
Knihovny.cz E-zdroje
- Klíčová slova
- computed tomography contrast agent, implant, light‐based 3D printing, light‐based crosslinking, photo‐crosslinkable polymers, polyester, thiol‐ene step growth polymerization,
- MeSH
- biokompatibilní materiály chemie MeSH
- myši MeSH
- polyestery * chemie MeSH
- poréznost MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury * chemie MeSH
- vstřebatelné implantáty MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery * MeSH
Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.
Zobrazit více v PubMed
L. Li, D. V. LaBarbera, (Eds: S. Chackalamannil, D. Rotella, S. E. Ward), in 3D High‐Content Screening of Organoids for Drug Discovery, Elsevier, Oxford, England, UK 2017, 388.
M. Jafari, Z. Paknejad, M. R. Rad, S. R. Motamedian, M. J. Eghbal, N. Nadjmi, A. Khojasteh, J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 431.
S. H. Kim, Y. Jung, (Eds: M. W. King, B. S. Gupta, R. Guidoin) in Biotextiles as Medical Implants, Woodhead Publishing, Sawston, Cambridge 2013, 91.
B. D. Ulery, L. S. Nair, C. T. Laurencin, J. Polym. Sci. B Polym. Phys. 2011, 49, 832.
B. Prediger, T. Mathes, C. Probst, D. Pieper, Syst Rev. 2020, 9, 225.
Q. Thijssen, A. Quaak, J. Toombs, E. De Vlieghere, L. Parmentier, H. Taylor, S. Van Vlierberghe, Adv. Mater. 2023, 35, 2210136.
Q. Thijssen, L. Parmentier, E. Augustyniak, P.‐A. Mouthuy, S. Van Vlierberghe, Adv. Funct. Mater. 2022, 32, 2108869.
Q. Thijssen, L. Parmentier, K. Van holsbeeck, S. Ballet, S. Van Vlierberghe, Biomacromolecules 2023, 24, 1638.
F. Causa, E. Battista, R. Della Moglie, D. Guarnieri, M. Iannone, P. A. Netti, Langmuir 2010, 26, 9875.
A. A. Appel, M. A. Anastasio, J. C. Larson, E. M. Brey, Biomaterials 2013, 34, 6615.
S. Y. Nam, L. M. Ricles, L. J. Suggs, S. Y. Emelianov, Tissue Eng. Part B Rev. 2014, 21, 88.
J. Fu, M. Wang, I. De Vlaminck, Y. Wang, Small 2020, 16, 2004133.
J. Shi, S. Chen, L. Wang, X. Zhang, J. Gao, L. Jiang, D. Tang, L. Zhang, A. Midgley, D. Kong, S. Wang, J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2040.
M. Sun, P. J. Kingham, A. J. Reid, S. J. Armstrong, G. Terenghi, S. I. Downes, J. Biomed. Mater. Res. A 2010, 93A, 1470.
M. Shahrezaee, M. Salehi, S. Keshtkari, A. Oryan, A. Kamali, B. Shekarchi, Nanomedicine 2018, 14, 2061.
S. H. Park, D. S. Park, J. W. Shin, Y. G. Kang, H. K. Kim, T. R. Yoon, J.‐W. Shin, J. Mater. Sci. Mater. Med. 2012, 23, 2671.
L. Jing, M. Sun, P. Xu, K. Yao, J. Yang, X. Wang, H. Liu, M. Sun, Y. Sun, R. Ni, J. Sun, D. Huang, ACS Appl. Bio. Mater. 2021, 4, 3189.
S. H. Kim, J. H. Park, J. S. Kwon, J. G. Cho, K. G. Park, C. H. Park, J. J. Yoo, A. Atala, H. S. Choi, M. S. Kim, S. J. Lee, Biomaterials 2020, 258, 120267.
X. Dang, N. M. Bardhan, J. Qi, L. Gu, N. A. Eze, C.‐W. Lin, S. Kataria, P. T. Hammond, A. M. Belcher, Sci. Rep. 2019, 9, 3873.
V. Crosignani, A. S. Dvornikov, J. S. Aguilar, C. Stringari, R. A. Edwards, W. W. Mantulin, E. Gratton, J. Biomed. Opt. 2012, 17, 116023.
K. M. Pawelec, E. Tu, S. Chakravarty, J. M. L. Hix, L. Buchanan, L. Kenney, F. Buchanan, N. Chatterjee, S. Das, A. Alessio, E. M. Shapiro, Adv. Healthcare Mater. 2023, 12, 2203167.
J. T. Martin, A. H. Milby, K. Ikuta, S. Poudel, C. G. Pfeifer, D. M. Elliott, H. E. Smith, R. L. Mauck, Acta Biomater. 2015, 26, 97.
S. Houshyar, H. Yin, L. Pope, R. Zizhou, C. Dekiwadia, E. L. Hill‐Yardin, J. M. C. Yeung, S. John, K. Fox, N. Tran, I. Cole, A. Elbourne, V. K. Truong, A. Truskewycz, OpenNano 2023, 9, 100120.
J. V. D. Perez, B. Singhana, J. Damasco, L. Lu, P. Behlau, R. D. Rojo, E. M. Whitley, F. Heralde, A. Melancon, S. Huang, M. P. Melancon, Materialia 2020, 14, 100874.
T. R. Olsen, L. L. Davis, S. E. Nicolau, C. C. Duncan, D. C. Whitehead, B. A. Van Horn, F. Alexis, Acta Biomater. 2015, 20, 94.
O. Groborz, K. Kolouchova, L. Parmentier, A. Szabo, B. Van Durme, D. Dunlop, T. Slanina, S. Van Vlierberghe, ACS Appl. Eng. Mater. 2024, 2, 811.
F. M. Muller, C. Vanhove, B. Vandeghinste, S. Vandenberghe, Med. Phys. 2022, 49, 3121.
D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, C. N. Bowman, Chem. Mater. 2014, 26, 724.
T. Canal, N. A. Peppas, J. Biomed. Mater. Res. 1989, 23, 1183.
S. Adamek, D. Mackillop, H. Schnecko, J. Appl. Polym. Sci. 1972, 16, 2511.
A. Kalra, (Eds: K.‐H. Yang) in Basic Finite Element Method as Applied to Injury Biomechanics, Academic Press, Cambridge, MA, USA 2018, 389–415.
S. A. Bolliger, L. Oesterhelweg, D. Spendlove, S. Ross, M. J. Thali, J. Forensic Sci. 2009, 54, 1119.
N. Emadi, Y. Safi, A. A. Bagheban, S. Asgary, Iran Endod. J. 2014, 9, 283.
F. Tatsugami, T. Higaki, Y. Nakamura, Y. Honda, K. Awai, Jpn J. Radiol. 2022, 40, 547.
R. N. Maniar, T. Singhi, Curr. Rev. Musculoskelet. Med. 2014, 7, 125.
D. A. Zopf, C. L. Flanagan, A. G. Mitsak, J. R. Brennan, S. J. Hollister, Int. J. Pediatr. Otorhinolaryngol. 2018, 114, 170.
I. Karakurt, L. Lin, Curr. Opin. Chem. Eng. 2020, 28, 134.
B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, H. K. Taylor, Science 2019, 363, 1075.
Q. Thijssen, J. Toombs, C. C. Li, H. Taylor, S. Van Vlierberghe, Prog. Polym. Sci. 2023, 147, 101755.
C. C. Cook, E. J. Fong, J. J. Schwartz, D. H. Porcincula, A. C. Kaczmarek, J. S. Oakdale, B. D. Moran, K. M. Champley, C. M. Rackson, A. Muralidharan, R. R. McLeod, M. Shusteff, Adv. Mater. 2020, 32, 2003376.