The Expression Level of Inflammation-Related Genes in Patients With Bone Nonunion and the Effect of BMP-2 Infected Mesenchymal Stem Cells Combined With nHA/PA66 on the Inflammation Level of Femoral Bone Nonunion Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39560192
PubMed Central
PMC11629945
DOI
10.33549/physiolres.935439
PII: 935439
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- femur metabolismus patologie MeSH
- fraktury femuru metabolismus genetika MeSH
- kostní morfogenetický protein 2 * metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- nezhojené fraktury * genetika metabolismus MeSH
- osteogeneze MeSH
- potkani Sprague-Dawley * MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zánět * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BMP2 protein, human MeSH Prohlížeč
- kostní morfogenetický protein 2 * MeSH
Bone nonunion delays fracture end repair and is associated with inflammation. Although bone nonunion can be effectively repaired in clinical practice, many cases of failure. Studies have confirmed that BMP-2 and nHA/PA66 repaired bone defects successfully. There are few studies on the effects of the combined application of BMP-2 and NHA/PA66 on bone nonunion osteogenesis and inflammation. We aimed to investigate the expression level of inflammation-related genes in patients with bone nonunion and the effect of BMP-2-infected mesenchymal stem cells combined with nHA/PA66 on the level of inflammation in femur nonunion rats. We searched for a gene expression profile related to bone nonunion inflammation (GSE93138) in the GEO public database. Bone marrow mesenchymal stem cells (MSCs) of SD rats were cultured and passed through. We infected the third generation of MSCs with lentivirus carrying BMP-2 and induced the infected MSCs to bone orientation. We detected the expression level of BMP-2 by RT-PCR and the cell viability and alkaline phosphatase (ALP) activity by CCK8 and then analyzed the cell adhesion ability. Finally, the levels of related inflammatory factors, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and Erythrocyte Sedimentation Rate (ESR), were detected in nonunion rats. Our findings: The patients with nonunion had up-regulated expression of 26 differentially inflammatory genes. These genes are mainly enriched in innate immune response, extracellular region, calcium ion binding, Pantothenate and CoA biosynthesis pathways. The expression level of BMP-2 in the Lenti-BMP-2 group was higher (vs. empty lentivirus vector group: t=5.699; vs. uninfected group t=3.996). The cell activity of the MSCs + BMP-2 + nHA/PA66 group increased gradually. After being combined with nHA/PA66, MSCs transfected with BMP-2 spread all over the surface of nHA/PA66 and grew into the material pores. MSCs + BMP-2 + nHA/PA66 cells showed positive ALP staining, and the OD value of ALP was the highest. The levels of CRP, IL-6, TNF-alpha, and ESR in the MSCs + BMP-2 + nHA/PA66 group were lower than those in the MSCs and MSCs + nHA/PA66 group but higher than those in MSCs + BMP-2 group. The above comparisons were all P<0.05. The findings demonstrated that the expression level of inflammation-related genes increased in the patients with bone nonunion. The infection of MSCs by BMP-2 could promote the directed differentiation of MSCs into osteoblasts in the bone marrow of rats, enhance the cell adhesion ability and ALP activity, and reduce inflammation in rats with bone nonunion.
Zobrazit více v PubMed
Deng AD, Innocenti M, Arora R, Gabl M, Tang JB. Vascularized Small-Bone Transfers for Fracture Nonunion and Bony Defects. Clin Plast Surg. 2020;47:501–520. doi: 10.1016/j.cps.2020.06.005. PubMed DOI
Lv S, Wang G, Dai L, Wang T, Wang F. Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes. Physiol Res. 2023;72:565–574. doi: 10.33549/physiolres.935143. PubMed DOI PMC
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716. doi: 10.1126/sciadv.abl5716. PubMed DOI PMC
Sekiguchi H, Inoue G, Shoji S, Tazawa R, Kuroda A, Miyagi M, Takaso M, Uchida K. Expression of nerve growth factor in the callus during fracture healing in a fracture model in aged mice. Biomed Mater Eng. 2022;33:131–137. doi: 10.3233/BME-211284. PubMed DOI
Goodnough LH, Goodman SB. Relationship of Aging, Inflammation, and Skeletal Stem Cells and Their Effects on Fracture Repair. Curr Osteoporos Rep. 2022;20:320–325. doi: 10.1007/s11914-022-00742-x. PubMed DOI
Liu X, Min HS, Chai Y, Yu X, Wen G. Masquelet technique with radical debridement and alternative fixation in treatment of infected bone nonunion. Front Surg. 2022;9:1000340. doi: 10.3389/fsurg.2022.1000340. PubMed DOI PMC
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs) Biomater Res. 2023;27:31. doi: 10.1186/s40824-023-00371-0. PubMed DOI PMC
Chae DS, Han S, Lee MK, Kim SW. BMP-2 Genome-Edited Human MSCs Protect against Cartilage Degeneration via Suppression of IL-34 in Collagen-Induced Arthritis. Int J Mol Sci. 2023;24:8223. doi: 10.3390/ijms24098223. PubMed DOI PMC
Li YL, Zhao WK, Zhang J, Xiang C, Chen Q, Yan C, Jiang K. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/yttria-stabilized zirconia as a novel bioactive material for bone screws: Biocompatibility and bioactivity. J Biomater Appl. 2020;35:108–122. doi: 10.1177/0885328220916618. PubMed DOI
Zhao W, Li Y, Zhou A, Chen X, Li K, Chen S, Qiao B, Jiang D. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration. R Soc Open Sci. 2020;7:191830. doi: 10.1098/rsos.191830. PubMed DOI PMC
Shabir U, Bhat IA, Pir BA, Bharti MK, Pandey S, Gutulla SK, Sarkar M, et al. Smad4 and γ-secretase knock-down effect on osteogenic differentiation mediated via Runx2 in canine mesenchymal stem cells. Res Vet Sci. 2022;145:116–124. doi: 10.1016/j.rvsc.2022.02.004. PubMed DOI
Ye W, Huang Y, Zhu G, Yan A, Liu Y, Xiao H, Mei H. miR-30a inhibits the osteogenic differentiation of the tibia-derived MSCs in congenital pseudarthrosis via targeting HOXD8. Regen Ther. 2022;21:477–485. doi: 10.1016/j.reth.2022.09.005. PubMed DOI PMC
Elias D, Ditzel HJ. Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacol Res. 2015;100:250–254. doi: 10.1016/j.phrs.2015.08.010. PubMed DOI
Ma H, Liu M, Fu R, Feng J, Ren H, Cao J, Shi M. Phase separation in innate immune response and inflammation-related diseases. Front Immunol. 2023;14:1086192. doi: 10.3389/fimmu.2023.1086192. PubMed DOI PMC
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci. 2021;22:8102. doi: 10.3390/ijms22158102. PubMed DOI PMC
Zhang Y, Li G, Zhao Y, Dai X, Hu M, Cao H, Huang K, Yang F. Inhibition of calcium imbalance protects hepatocytes from vanadium exposure-induced inflammation by mediating mitochondrial-associated endoplasmic reticulum membranes in ducks. Poult Sci. 2023;102:103013. doi: 10.1016/j.psj.2023.103013. PubMed DOI PMC
Yeudall S, Upchurch CM, Seegren PV, Pavelec CM, Greulich J, Lemke MC, Harris TE, et al. Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism. Sci Adv. 2022;8:eabq1984. doi: 10.1126/sciadv.abq1984. PubMed DOI PMC
Nirwan N, Vohora D. Linagliptin in Combination With Metformin Ameliorates Diabetic Osteoporosis Through Modulating BMP-2 and Sclerostin in the High-Fat Diet Fed C57BL/6 Mice. Front Endocrinol (Lausanne) 2022;13:944323. doi: 10.3389/fendo.2022.944323. PubMed DOI PMC
Ghimire S, Miramini S, Edwards G, Rotne R, Xu J, Ebeling P, Zhang L. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep. 2020;14:100740. doi: 10.1016/j.bonr.2020.100740. PubMed DOI PMC
Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E, Gangji V. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone. 2013;53:391–398. doi: 10.1016/j.bone.2013.01.005. PubMed DOI
Gao S, Chen B, Zhu Z, Du C, Zou J, Yang Y, Huang W, Liao J. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): A transcriptomic landscape analysis. Stem Cell Res. 2023;66:103010. doi: 10.1016/j.scr.2022.103010. PubMed DOI
Kendal JK, Singla A, Affan A, Hildebrand K, Al-Ani A, Ungrin M, Mahoney DJ, et al. Is Use of BMP-2 Associated with Tumor Growth and Osteoblastic Differentiation in Murine Models of Osteosarcoma? Clin Orthop Relat Res. 2020;478:2921–2933. doi: 10.1097/CORR.0000000000001422. PubMed DOI PMC
Yi M, Nie Y, Zhang C, Shen B. Application of Mesoporous Silica Nanoparticle-Chitosan-Loaded BMP-2 in the Repair of Bone Defect in Chronic Osteomyelitis. J Immunol Res. 2022;2022:4450196. doi: 10.1155/2022/4450196. PubMed DOI PMC
Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020;7:53–61. doi: 10.1093/rb/rbz033. PubMed DOI PMC
Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, Ho S, et al. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 2013;19:2390–2401. doi: 10.1089/ten.tea.2012.0519. PubMed DOI PMC
Khan S, Peracha A, Abro AA, Sufyan M, Rahim Najjad MK, Aziz S, Khan MM. Clinical studies investigating the role of mesenchymal stem cells in healing of fracture non-unions: a systematic review. J Pak Med Assoc. 2023;73(Suppl 1):S26–S31. doi: 10.47391/JPMA.AKUS-05. PubMed DOI
Zou Q, Li J, Niu L, Zuo Y, Li J, Li Y. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. J Biomater Sci Polym Ed. 2017;28:1271–1285. doi: 10.1080/09205063.2017.1318029. PubMed DOI
Li A, Li J, Zhang Z, Li Z, Chi H, Song C, Wang X, et al. Nanohydroxyapatite/polyamide 66 crosslinked with QK and BMP-2-derived peptide prevented femur nonunion in rats. J Mater Chem B. 2021;9:2249–2265. doi: 10.1039/D0TB02554B. PubMed DOI
Liu W, Huang Y, Liu D, Zeng T, Wang J, Li A, Wang D, Wang X. The Combination of Platelet Rich Plasma Gel, Human Umbilical Mesenchymal Stem Cells and Nanohydroxyapatite/polyamide 66 Promotes Angiogenesis and Bone Regeneration in Large Bone Defect. Tissue Eng Regen Med. 2022;19:1321–1336. doi: 10.1007/s13770-022-00471-3. PubMed DOI PMC
Kostiv RE, Matveeva NY, Kalinichenko SG. Localization of VEGF, TGF-β1, BMP-2, and Apoptosis Factors in Hypertrophic Nonunion of Human Tubular Bones. Bull Exp Biol Med. 2022;173:160–168. doi: 10.1007/s10517-022-05513-3. PubMed DOI
Vantucci CE, Krishan L, Cheng A, Prather A, Roy K, Guldberg RE. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci. 2021;9:1668–1682. doi: 10.1039/D0BM01728K. PubMed DOI PMC