Sofosbuvir Polymorphs Distinguished by Linearly and Circularly Polarized Raman Microscopy

. 2024 Dec 03 ; 96 (48) : 18983-18993. [epub] 20241121

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39569750

Most currently marketed pharmaceuticals are manufactured in the solid state, where the bioavailability of the active pharmaceutical ingredient (API) can be optimized through different polymorphs, cocrystals, solvates, or salts. Efficient techniques are needed to monitor the structure of pharmaceuticals during production. Here, we explore the potential of linearly and circularly polarized Raman microscopy for distinguishing three polymorphs of sofosbuvir, an antiviral drug used to treat hepatitis C. Raman spectra were recorded on a Raman microscope for a polycrystalline API diluted in a KBr matrix. To understand spectral features including the low-frequency region, we simulated band frequencies and intensities using quantum-chemical computational strategies based on cluster and transfer approaches. Very good agreement was achieved between simulated and experimental intensities. The 20 to 200 cm-1 wavenumber region appeared particularly useful for polymorph discrimination already based on unpolarized measurements. The depolarization ratios obtained from linearly polarized Raman spectra made the distinction even more reliable. Moreover, circularly polarized Raman spectra and normalized degrees of circularity provided useful additional information and revealed several tentative markers of the different polymorphs of sofosbuvir. Although in some spectral regions the differences were less obvious, the results indicate that polarized Raman microscopy is a handy tool for discriminating between polymorphs of APIs and other compounds.

Zobrazit více v PubMed

Fontana F.; Figueiredo P.; Zhang P.; Hirvonen J. T.; Liu D.; Santos H. A. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv. Drug Delivery Rev. 2018, 131, 3–21. 10.1016/j.addr.2018.05.002. PubMed DOI

Štejfa V.; Bazyleva A.; Fulem M.; Rohlíček J.; Skořepová E.; Růžička K.; Blokhin A. V. Polymorphism and thermophysical properties of l- and dl-menthol. J. Chem. Thermodyn. 2019, 131, 524–543. 10.1016/j.jct.2018.11.004. PubMed DOI PMC

Bharate S. S. Recent developments in pharmaceutical salts: FDA approvals from 2015 to 2019. Drug Discovery Today 2021, 26, 384–398. 10.1016/j.drudis.2020.11.016. PubMed DOI

Zhu B.; Zhang Q.; Ren G.; Mei X. Solid-State Characterization and Insight into Transformations and Stability of Apatinib Mesylate Solvates. Cryst. Growth Des. 2017, 17, 5994–6005. 10.1021/acs.cgd.7b01123. DOI

Zhou Y.; Lv C.; Liu X.; Gao J.; Gao Y.; Wang T.; Huang X. An Overview on Polymorph Preparation Methods of Active Pharmaceutical Ingredients. Cryst. Growth Des. 2024, 24, 584–600. 10.1021/acs.cgd.3c00199. DOI

Tandon R.; Tandon N.; Thapar R. K. Patenting of polymorphs. Pharm. Pat. Anal. 2018, 7, 59–63. 10.4155/ppa-2017-0039. PubMed DOI

Raw A. S.; Furness M. S.; Gill D. S.; Adams R. C.; Holcombe F. O.; Yu L. X. Regulatory considerations of pharmaceutical solid polymorphism in Abbreviated New Drug Applications (ANDAs). Adv. Drug Delivery Rev. 2004, 56, 397–414. 10.1016/j.addr.2003.10.011. PubMed DOI

Censi R.; Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015, 20, 18759–18776. 10.3390/molecules201018759. PubMed DOI PMC

Sládková V.; Dammer O.; Sedmak G.; Skořepová E.; Kratochvíl B. Ivabradine Hydrochloride (S)-Mandelic Acid Co-Crystal: In Situ Preparation during Formulation. Crystals 2017, 7, 13.10.3390/cryst7010013. DOI

Rodríguez I.; Gautam R.; Tinoco A. D. Using X-ray Diffraction Techniques for Biomimetic Drug Development, Formulation, and Polymorphic Characterization. Biomimetics 2021, 6, 1.10.3390/biomimetics6010001. PubMed DOI PMC

Du Y.; Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. Solid State Nucl. Magn. Reson. 2022, 120, 101796.10.1016/j.ssnmr.2022.101796. PubMed DOI

Mathew R.; Uchman K. A.; Gkoura L.; Pickard C. J.; Baias M. Identifying aspirin polymorphs from combined DFT-based crystal structure prediction and solid-state NMR. Magn. Reson. Chem. 2020, 58, 1018–1025. 10.1002/mrc.4987. PubMed DOI

Wang L.-L.; Wang L.-Y.; Yu Y.-M.; Li Y.-T.; Wu Z.-Y.; Yan C.-W. Cocrystallization of 5-fluorouracil and l-phenylalanine: the first zwitterionic cocrystal of 5-fluorouracil with amino acid exhibiting perfect in vitro/vivo pharmaceutical properties. CrystEngComm 2020, 22, 5010–5021. 10.1039/D0CE00713G. DOI

Shah K. C.; Shah M. B.; Solanki S. J.; Makwana V. D.; Sureja D. K.; Gajjar A. K.; Bodiwala K. B.; Dhameliya T. M. Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis. J. Mol. Struct. 2023, 1278, 134914.10.1016/j.molstruc.2023.134914. DOI

Inoue M.; Hisada H.; Koide T.; Fukami T.; Roy A.; Carriere J.; Heyler R. Transmission Low-Frequency Raman Spectroscopy for Quantification of Crystalline Polymorphs in Pharmaceutical Tablets. Anal. Chem. 2019, 91, 1997–2003. 10.1021/acs.analchem.8b04365. PubMed DOI

Park H.; Nie H.; Dhiman A.; Tomar V.; Zhou Q. T. Understanding Dynamics of Polymorphic Conversion during the Tableting Process Using In Situ Mechanical Raman Spectroscopy. Mol. Pharm. 2020, 17, 3043–3052. 10.1021/acs.molpharmaceut.0c00460. PubMed DOI

Dan Córdoba A. V.; Aiassa V.; Dimmer J. A.; Barrionuevo C. N.; Quevedo M. A.; Longhi M. R.; Zoppi A. Development and Characterization of Pharmaceutical Systems Containing Rifampicin. Pharmaceutics 2023, 15, 198.10.3390/pharmaceutics15010198. PubMed DOI PMC

Frelek J.; Górecki M.; Łaszcz M.; Suszczyńska A.; Vass E.; Szczepek W. J. Distinguishing between polymorphic forms of linezolid by solid-phase electronic and vibrational circular dichroism. Chem. Commun. 2012, 48, 5295–5297. 10.1039/c2cc31207g. PubMed DOI

Frelek J.; Gorecki M.; Dziedzic A.; Jablonska E.; Kamienski B.; Wojcieszczyk R. K.; Luboradzki R.; Szczepek W. J. Comprehensive spectroscopic characterization of finasteride polymorphic forms. does the form X exist?. J. Pharm. Sci. 2015, 104, 1650–1657. 10.1002/jps.24369. PubMed DOI

Sklenář A.; Růžičková L.; Schrenková V.; Bednárová L.; Pazderková M.; Chatziadi A.; Zmeškalová Skořepová E.; Šoóš M.; Kaminský J. Solid-state vibrational circular dichroism for pharmaceutical applications: Polymorphs and cocrystal of sofosbuvir. Spectrochim. Acta, Part A 2024, 318, 124478.10.1016/j.saa.2024.124478. PubMed DOI

Haefele T. F.; Paulus K.. Confocal raman microscopy in pharmaceutical development. In Springer Series in Optical Sciences; Dieing T., Hollricher O., Toporski J., Eds.; Springer, 2010; Vol. 158, pp 165–202.

Luebbert C.; Klanke C.; Sadowski G. Investigating phase separation in amorphous solid dispersions via Raman mapping. Int. J. Pharm. 2018, 535, 245–252. 10.1016/j.ijpharm.2017.11.014. PubMed DOI

Reddy J. P.; Jones J. W.; Wray P. S.; Dennis A. B.; Brown J.; Timmins P. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy. Int. J. Pharm. 2018, 541, 253–260. 10.1016/j.ijpharm.2018.02.021. PubMed DOI

Carriere J. T.; Havermeyer F.. Ultra-low frequency Stokes and anti-Stokes Raman spectroscopy at 785nm with volume holographic grating filters. Progress in Biomedical Optics and Imaging-Proceedings of SPIE, 2012; Vol. 8219.

Kim J.; Lee J. U.; Cheong H. Polarized Raman spectroscopy for studying two-dimensional materials. J. Phys.: Condens. Matter 2020, 32, 343001.10.1088/1361-648X/ab8848. PubMed DOI

Be̅rziņš K.; Fraser-Miller S. J.; Gordon K. C. Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. Int. J. Pharm. 2021, 592, 120034.10.1016/j.ijpharm.2020.120034. PubMed DOI

Hatipoglu M. K.; Zaker Y.; Willett D. R.; Gupta N.; Rodriguez J. D.; Patankar S.; Capella P.; Yilmaz H. Old Polymorph, New Technique: Assessing Ritonavir Crystallinity Using Low-Frequency Raman Spectroscopy. Anal. Chem. 2023, 95, 15325–15332. 10.1021/acs.analchem.3c02781. PubMed DOI

Ruggiero M. T.; Sutton J. J.; Fraser-Miller S. J.; Zaczek A. J.; Korter T. M.; Gordon K. C.; Zeitler J. A. Revisiting the Thermodynamic Stability of Indomethacin Polymorphs with Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations. Cryst. Growth Des. 2018, 18, 6513–6520. 10.1021/acs.cgd.8b00623. DOI

Aviv H.; Nemtsov I.; Mastai Y.; Tischler Y. R. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy. J. Phys. Chem. A 2017, 121, 7882–7888. 10.1021/acs.jpca.7b07033. PubMed DOI

Ge M.; Wang Y.; Zhu J.; Wu B.; Xu D.; Yao J. Low-Frequency Vibrational Spectroscopy Characteristic of Pharmaceutical Carbamazepine Co-Crystals with Nicotinamide and Saccharin. Sensors 2022, 22, 4053.10.3390/s22114053. PubMed DOI PMC

Be̅rziņš K.; Sales R. E.; Barnsley J. E.; Walker G.; Fraser-Miller S. J.; Gordon K. C. Low-wavenumber Raman spectral database of pharmaceutical excipients. Vibr. Spectrosc. 2020, 107, 103021.10.1016/j.vibspec.2020.103021. DOI

Xu B.; Mao N.; Zhao Y.; Tong L.; Zhang J. Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452. 10.1021/acs.jpclett.1c01889. PubMed DOI

Thyr J.; Österlund L.; Edvinsson T. Polarized and non-polarized Raman spectroscopy of ZnO crystals: Method for determination of crystal growth and crystal plane orientation for nanomaterials. J. Raman Spectrosc. 2021, 52, 1395–1405. 10.1002/jrs.6148. DOI

Zou B.; Wei Y.; Zhou Y.; Ke D.; Zhang X.; Zhang M.; Yip C.-T.; Chen X.; Li W.; Sun H. Unambiguous determination of crystal orientation in black phosphorus by angle-resolved polarized Raman spectroscopy. Nanoscale Horiz. 2021, 6, 809–818. 10.1039/D1NH00220A. PubMed DOI

Ilchenko O.; Pilgun Y.; Kutsyk A.; Bachmann F.; Slipets R.; Todeschini M.; Okeyo P. O.; Poulsen H. F.; Boisen A. Fast and quantitative 2D and 3D orientation mapping using Raman microscopy. Nat. Commun. 2019, 10, 5555.10.1038/s41467-019-13504-8. PubMed DOI PMC

Motai K.; Koishihara N.; Narimatsu T.; Ohtsu H.; Kawano M.; Wada Y.; Akisawa K.; Okuwaki K.; Mori T.; Kim J.-S.; et al. Bifurcated Hydrogen Bonds in a Peptide Crystal Unveiled by X-ray Diffraction and Polarized Raman Spectroscopy. Cryst. Growth Des. 2023, 23, 4556–4561. 10.1021/acs.cgd.3c00302. PubMed DOI PMC

Zhang S.; Zhang N.; Zhao Y.; Cheng T.; Li X.; Feng R.; Xu H.; Liu Z.; Zhang J.; Tong L. Spotting the differences in two-dimensional materials – the Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3217–3240. 10.1039/C7CS00874K. PubMed DOI

Fasolato C.; Zardo I.; De Luca M.. Addressing Crystal Structure in Semiconductor Nanowires by Polarized Raman Spectroscopy. In Fundamental Properties of Semiconductor Nanowires; Fukata N., Rurali R., Eds.; Springer: Singapore, 2021; pp 307–348.

Moriyama K.; Onishi H.; Ota H. Visualization of Primary Particles in a Tablet Based on Raman Crystal Orientation Mapping. Pharm. Anal. Acta 2015, 6, 1–3. 10.4172/2153-2435.1000453. DOI

Kolesov B. A.; Mikhailenko M. A.; Boldyreva E. V. Dynamics of the intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: a variable-temperature polarized Raman spectroscopy study. Phys. Chem. Chem. Phys. 2011, 13, 14243–14253. 10.1039/c1cp20139e. PubMed DOI

Zhao Y.; Han S.; Zhang J.; Tong L. Helicity-resolved resonant Raman spectroscopy of layered WS2. J. Raman Spectrosc. 2021, 52, 525–531. 10.1002/jrs.5996. DOI

Saito R.; Hung N. T.; Yang T.; Huang J.; Liu H.-L.; Gulo D. P.; Han S.; Tong L. Deep-Ultraviolet and Helicity-Dependent Raman Spectroscopy for Carbon Nanotubes and 2D Materials. Small 2024, 2308558.10.1002/smll.202308558. PubMed DOI

Han S.; Hung N. T.; Xie Y.; Saito R.; Zhang J.; Tong L. Observing Axial Chirality of Chiral Single-Wall Carbon Nanotubes by Helicity-Dependent Raman Spectra. Nano Lett. 2023, 23, 8454–8459. 10.1021/acs.nanolett.3c01791. PubMed DOI

Hug W.; Hangartner G. A novel high-throughput Raman spectrometer for polarization difference measurements. J. Raman Spectrosc. 1999, 30, 841–852. 10.1002/(SICI)1097-4555(199909)30:9<841::AID-JRS456>3.0.CO;2-1. DOI

Guo S.; Popp J.; Bocklitz T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 2021, 16, 5426–5459. 10.1038/s41596-021-00620-3. PubMed DOI

Milani A. Unpolarized and Polarized Raman Spectroscopy of Nylon-6 Polymorphs: A Quantum Chemical Approach. J. Phys. Chem. B 2015, 119, 3868–3874. 10.1021/jp5125266. PubMed DOI

Pagliai M.; Osticioli I.; Nevin A.; Siano S.; Cardini G.; Schettino V. DFT calculations of the IR and Raman spectra of anthraquinone dyes and lakes. J. Raman Spectrosc. 2018, 49, 668–683. 10.1002/jrs.5334. DOI

Schrenková V.; Para Kkadan M. S.; Kessler J.; Kapitán J.; Bouř P. Molecular dynamics and Raman optical activity spectra reveal nucleotide conformation ratios in solution. Phys. Chem. Chem. Phys. 2023, 25, 8198–8208. 10.1039/D2CP05756E. PubMed DOI

Be̅rziņš K.; Sutton J. J.; Fraser-Miller S. J.; Rades T.; Korter T. M.; Gordon K. C. Solving the Computational Puzzle: Toward a Pragmatic Pathway for Modeling Low-Energy Vibrational Modes of Pharmaceutical Crystals. Cryst. Growth Des. 2020, 20, 6947–6955. 10.1021/acs.cgd.0c00997. DOI

Davis M. P.; Korter T. M. Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations of the Crystalline Polymorphs of the Antiviral Drug Ribavirin. Mol. Pharm. 2022, 19, 3385–3393. 10.1021/acs.molpharmaceut.2c00509. PubMed DOI PMC

Clark S. J.; Segall M. D.; Pickard C. J.; Hasnip P. J.; Probert M. I. J.; Refson K.; Payne M. C. First principles methods using CASTEP. Z. für Kristallogr. -Cryst. Mater. 2005, 220, 567–570. 10.1524/zkri.220.5.567.65075. DOI

Bouř P.; Sopková J.; Bednárová L.; Maloň P.; Keiderling T. A. Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra. J. Comput. Chem. 1997, 18, 646–659. 10.1002/(SICI)1096-987X(19970415)18:5<646::AID-JCC6>3.0.CO;2-N. DOI

Hoshina H.; Ishii S.; Yamamoto S.; Morisawa Y.; Sato H.; Uchiyama T.; Ozaki Y.; Otani C. Terahertz Spectroscopy in Polymer Research: Assignment of Intermolecular Vibrational Modes and Structural Characterization of Poly(3-Hydroxybutyrate). IEEE Trans. Terahertz Sci. Technol. 2013, 3, 248–258. 10.1109/TTHZ.2013.2253154. DOI

Dračínský M.; Procházková E.; Kessler J.; Šebestík J.; Matějka P.; Bouř P. Resolution of Organic Polymorphic Crystals by Raman Spectroscopy. J. Phys. Chem. B 2013, 117, 7297–7307. 10.1021/jp404382f. PubMed DOI

Nakamura M.; Kanda T.; Haga Y.; Sasaki R.; Wu S.; Nakamoto S.; Yasui S.; Arai M.; Imazeki F.; Yokosuka O. Sofosbuvir treatment and hepatitis C virus infection. World J. Hepatol. 2016, 8, 183–190. 10.4254/wjh.v8.i3.183. PubMed DOI PMC

Mande H. M.; Jetti R. K. R.; Das P. P.; Nicolopoulos S. Conformational polymorphism in sofosbuvir: some structural insights. Acta Crystallogr., Sect. A: Found. Adv. 2017, 73, C434.10.1107/S2053273317091392. DOI

Chatziadi A.; Skorepova E.; Jirat J.; Rohlíček J.; Šoóš M. Characterization and Insights into the Formation of New Multicomponent Solid Forms of Sofosbuvir. Cryst. Growth Des. 2022, 22 (5), 3395–3404. 10.1021/acs.cgd.2c00207. DOI

Chatziadi A.; Skořepová E.; Rohlíček J.; Dušek M.; Ridvan L.; Šoóš M. Mechanochemically Induced Polymorphic Transformations of Sofosbuvir. Cryst. Growth Des. 2020, 20, 139–147. 10.1021/acs.cgd.9b00922. DOI

Program sc95 . Institute of Organic Chemistry and Biochemistry of the CAS: Prague, Czech Republic, 2024.

Krupová M.; Kessler J.; Bouř P. Polymorphism of Amyloid Fibrils Induced by Catalytic Seeding: A Vibrational Circular Dichroism Study. ChemPhysChem 2021, 22, 83–91. 10.1002/cphc.202000797. PubMed DOI

Program QGRAD . Institute of Organic Chemistry and Biochemistry of the CAS: Prague, Czech Republic, 2020.

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.

Bouř P.; Keiderling T. A. Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. J. Chem. Phys. 2002, 117, 4126–4132. 10.1063/1.1498468. DOI

Takano Y.; Houk K. N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. J. Chem. Theory Comput. 2005, 1, 70–77. 10.1021/ct049977a. PubMed DOI

Daněček P.; Bouř P. Comparison of the numerical stability of methods for anharmonic calculations of vibrational molecular energies. J. Comput. Chem. 2007, 28, 1617–1624. 10.1002/jcc.20654. PubMed DOI

Roy S.; Chamberlin B.; Matzger A. J. Polymorph Discrimination Using Low Wavenumber Raman Spectroscopy. Org. Process Res. Dev. 2013, 17, 976–980. 10.1021/op400102e. PubMed DOI PMC

Ayala A. P. Polymorphism in drugs investigated by low wavenumber Raman scattering. Vibr. Spectrosc. 2007, 45, 112–116. 10.1016/j.vibspec.2007.06.004. DOI

Larkin P. J.; Dabros M.; Sarsfield B.; Chan E.; Carriere J. T.; Smith B. C. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency raman spectroscopy. Appl. Spectrosc. 2014, 68, 758–776. 10.1366/13-07329. PubMed DOI

Ohno K.; Kimura J.; Yamakita Y. Strong Raman activities of low frequency vibrational modes in alkylbenzenes: conformation specific σ–π interactions between alkyl chain and benzene ring. Chem. Phys. Lett. 2001, 342, 207–219. 10.1016/S0009-2614(01)00577-2. DOI

Debie E.; De Gussem E.; Dukor R. K.; Herrebout W.; Nafie L. A.; Bultinck P. A Confidence Level Algorithm for the Determination of Absolute Configuration Using Vibrational Circular Dichroism or Raman Optical Activity. ChemPhysChem 2011, 12, 1542–1549. 10.1002/cphc.201100050. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...