Ni(0)-Catalyzed Efficient, Regioselective Synthesis of Dibenzo[b,e]oxepines and Dibenzo[c,f][1,2]oxathiepine 6,6-Dioxides: Mechanistic Study by DFT Calculation and Docking Interactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39583656
PubMed Central
PMC11579748
DOI
10.1021/acsomega.4c06569
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Herein, a nickel-catalyzed divergent reductive-Heck reaction of 1-bromo-2-((2-(aryl/alkyl ethynyl)phenoxy)methyl)benzene and 2-(aryl/alkyl ethynyl)phenyl 2-bromobenzenesulfonate derivatives has been demonstrated through the regulation of reducing agents and solvent systems. This scalable protocol offers regio- and stereoselective access to functionalized dibenzo[b,e]oxepine and dibenzo[c,f][1,2]oxathiepine 6,6-dioxide scaffolds in high to excellent yields under a mild set of reaction conditions. This methodology offers a predictable route for the synthesis of medium ring oxygen heterocycles and demonstrates wide substrate scope and outstanding tolerance to various functional groups like hydroxyl and, of course, practical instance via the synthesis of doxepin and nordoxepin molecules. We validate the experimentally proposed reaction mechanism using the density functional theory method. Further, molecular docking interactions were investigated accommodating some of our synthesized molecules.
Zobrazit více v PubMed
Millán A.; Alvarez de Cienfuegos L.; Miguel D.; Campaña A. G.; Cuerva J. M. Water Control over the Chemoselectivity of a Ti/Ni Multimetallic System: Heck- or Reductive-Type Cyclization Reactions of Alkyl Iodides. Org. Lett. 2012, 14, 5984–5987. 10.1021/ol3028913. PubMed DOI
Jung J.-K.; Choi N.-S.; Suh Y.-G. Functional Divergency Oriented Synthesis of Azoninones as the Key Intermediates for Bioactive Indolizidine Alkaloids Analogs. Arch. Pharmacol. Res. 2004, 27, 985–989. 10.1007/BF02975418. PubMed DOI
Villar H.; Frings M.; Bolm C. Ring closing enyne metathesis: A powerful tool for the synthesis of heterocycles. Chem. Soc. Rev. 2007, 36, 55–66. 10.1039/B508899M. PubMed DOI
Clark J. S.; Grainger D. M.; Ehkirch A. A.-C.; Blake A. J.; Wilson C. Synthesis of the Fused Polyether Core of Hemibrevetoxin B by Two-Directional Ring-Closing Metathesis. Org. Lett. 2007, 9, 1033–1036. 10.1021/ol0630651. PubMed DOI
Mondal S.; Debnath S. Ring-closing metathesis in the synthesis of fused sultones. Tetrahedron Lett. 2014, 55, 1577–1580. 10.1016/j.tetlet.2014.01.074. DOI
Potukuchi H. K.; Colomer I.; Donohoe T. J. Synthesis of Aromatic Heterocycles Using Ring-Closing Metathesis. Adv. Heterocycl. Chem. 2016, 120, 43–65. 10.1016/bs.aihch.2016.04.006. DOI
Gutiérrez-Loriente A.; Martín-Álvarez J. M.; Prieto E.; Andrés C.; Nieto J. Synthesis of Enantiopure Oxygen- and Nitrogen-Containing Heterocycles by Diastereoselective Ring-Closing Metathesis Reaction in Perhydro-1,3-benzoxazine Derivatives. Adv. Synth. Catal. 2019, 361, 1042–1063. 10.1002/adsc.201801454. DOI
Sinka V.; Martín V. S.; Cruz D. A.; Padrón J. I. Synthesis of Seven Membered Oxacycles: Recent Developments and New Approaches. Eur. J. Org. Chem. 2020, 43, 6704–6717. 10.1002/ejoc.202000850. DOI
Trost B. M.Homogeneous Transition Metal Catalyzed Reactions; Moser W. R.; Slocum D. W., Eds.; American Chemical Society: Washington DC, 1992; p. 463. Chapter 31.
Yet L. Metal-Mediated Synthesis of Medium-Sized Rings. Chem. Rev. 2000, 100, 2963–3008. 10.1021/cr990407q. PubMed DOI
Rosillo M.; Domínguez G.; Casarrubios L.; Pérez-Castells J. Arene–Chromium Tricarbonyl Complexes in the Pauson–Khand Reaction. J. Org. Chem. 2005, 70, 10611–10614. 10.1021/jo0519965. PubMed DOI
Coulter M. M.; Dornan P. K.; Dong V. M. Rh-Catalyzed Intramolecular Olefin Hydroacylation: Enantioselective Synthesis of Seven- and Eight-Membered Heterocycles. J. Am. Chem. Soc. 2009, 131, 6932–6933. 10.1021/ja901915u. PubMed DOI
Majumdar K. C.; Ghosh T.; Ponra S. A reductive Mizoroki–Heck approach to dibenzo[b,e]oxepine. Tetrahedron Lett. 2013, 54, 4661–4665. 10.1016/j.tetlet.2013.06.070. DOI
Choury M.; Lopes A. B.; Blond G.; Gulea M. Synthesis of Medium-Sized Heterocycles by Transition-Metal-Catalyzed Intramolecular Cyclization. Molecules 2020, 25, 3147.10.3390/molecules25143147. PubMed DOI PMC
Wiegand M. H. Antidepressants for the Treatment of Insomnia. Drugs 2008, 68, 2411–2417. 10.2165/0003495-200868170-00001. PubMed DOI
Jolidon S.; Alberati D.; Dowle A.; Fischer H.; Hainzl D.; Narquizian R.; Norcross R.; Pinard E. Design, synthesis and structure-activity relationship of simple bis-amides as potent inhibitors of GlyT1. Bioorg. Med. Chem. Lett. 2008, 18, 5533–5536. 10.1016/j.bmcl.2008.09.005. PubMed DOI
Pinder R. M.; Brogden R. N.; Speight T. M.; Avery G. S. Doxepin Up-to-Date: A Review of its Pharmacological Properties and Therapeutic Efficacy with Particular Reference to Depression. Drugs 1977, 13, 161–218. 10.2165/00003495-197713030-00001. PubMed DOI
Midha K. K.; Hubbard J. W.; Mckay G.; Haws E. M.; Korchinski E. D.; Gurnsy T.; Cooper J. K.; Schwede R. Stereoselective pharmacokinetics of doxepin isomers. Eur. J. Clin. Pharmacol. 1992, 42, 539–544. 10.1007/BF00314865. PubMed DOI
Kaliner M. A.; Oppenheimer J.; Farrar J. R. Comprehensive review of olopatadine: the molecule and its clinical entities. Allergy Asthma Proc. 2010, 31, 112–119. 10.2500/aap.2010.31.3317. PubMed DOI
Weinstabl H.; Suhartono M.; Qureshi Z.; Lautens M. Total Synthesis of (+)-Linoxepin by Utilizing the Catellani Reaction. Angew. Chem., Int. Ed. Engl. 2013, 52, 5305–5308. 10.1002/anie.201302327. PubMed DOI PMC
Paduraru M. P.; Wilson P. D. Synthesis of the Polycyclic Ring Systems of Artocarpol A and D. Org. Lett. 2003, 5, 4911–4913. 10.1021/ol0360703. PubMed DOI
Majumdar K. C.; Chattopadhyay B.; Ray K. Novel synthesis of medium-sized oxa-heterocycles by palladium-catalyzed intramolecular Heck reaction. Tetrahedron Lett. 2007, 48, 7633–7636. 10.1016/j.tetlet.2007.08.121. DOI
Richey R. N.; Yu H. Development of an Efficient Palladium-Catalyzed Intramolecular Carbometalation Reaction for the Synthesis of a Dibenzoxapine Containing Tetra-substituted Exocyclic Alkene. Org. Process Res. Dev. 2009, 13, 315–320. 10.1021/op800231b. DOI
Rafiee F.; Hasani S. Exciting progress in the transition metal-catalyzed synthesis of oxepines, benzoxepines, dibenzoxepines, and other derivatives. Appl. Organomet. Chem. 2022, 36, e655510.1002/aoc.6555. DOI
Metz P.; Stölting J.; Läge M.; Krebs B. A Short and Highly Stereoselective Synthesis of the 1,10-seco-Eudesmanolide Ivangulin. Angew. Chem., Int. Ed. Engl. 1994, 33, 2195–2197. 10.1002/anie.199421951. DOI
Merten J.; Fröhlich R.; Metz P. Enantioselective Total Synthesis of the Highly Oxygenated 1,10-seco-Eudesmanolides Eriolanin and Eriolangin. Angew. Chem., Int. Ed. 2004, 43, 5991–5994. 10.1002/anie.200460936. PubMed DOI
Flohic A. L.; Meyer C.; Cossy J. Total Synthesis of (±)-Mycothiazole and Formal Enantioselective Approach. Org. Lett. 2005, 7, 339–342. 10.1021/ol047603q. PubMed DOI
Merten J.; Hennig A.; Schwab P.; Fröhlich R.; Tokalov R. V.; Gutzeit H. O.; Metz P. A Concise Sultone Route to Highly Oxygenated 1,10-seco-Eudesmanolides–Enantioselective Total Synthesis of the Antileukemic Sesquiterpene Lactones(−)-Eriolanin and (−)-Eriolangin. Eur. J. Org. Chem. 2006, 5, 1144–1161. 10.1002/ejoc.200500739. DOI
Mondal S. Recent Developments in the Synthesis and Application of Sultones. Chem. Rev. 2012, 112, 5339–5355. 10.1021/cr2003294. PubMed DOI
Johansson Seechurn C. C. C.; Kitching M. O.; Colacot Y. J.; Snieckus V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem., Int. Ed. 2012, 51, 5062–5085. 10.1002/anie.201107017. PubMed DOI
Metal Catalyzed Cross-Coupling Reactions and More; de Meijere A.; Bräse S.; Oestreich M., Eds.; Wiley: Hoboken, 2013; vol. 3.
Henrion M.; Ritleng V.; Chetcuti M. J. Nickel N-Heterocyclic Carbene-Catalyzed C–C Bond Formation: Reactions and Mechanistic Aspects. ACS Catal. 2015, 5, 1283–1302. 10.1021/cs5014927. DOI
Egorova K. S.; Ananikov V. P. Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew. Chem., Int. Ed. 2016, 55, 12150–12162. 10.1002/anie.201603777. PubMed DOI
Lin B.-L.; Liu L.; Fu Y.; Luo S.-W.; Chen Q.; Guo Q.-X. Comparing Nickel- and Palladium-Catalyzed Heck Reactions. Organometallics 2004, 23, 2114–2123. 10.1021/om034067h. DOI
Menezes da Silva V. H.; Braga A. A. C.; Cundari T. R. N-Heterocyclic Carbene Based Nickel and Palladium Complexes: A DFT Comparison of the Mizoroki–Heck Catalytic Cycles. Organometallics 2016, 35, 3170–3181. 10.1021/acs.organomet.6b00532. DOI
Lv H.; Kang H.; Zhou B.; Xue X.; Engle K. M.; Zhao D. Nickel-catalyzed intermolecular oxidative Heck arylation driven by transfer hydrogenation. Nat. Commun. 2019, 10, 5025.10.1038/s41467-019-12949-1. PubMed DOI PMC
Huang X.; Teng S.; Chi Y. R.; Xu W.; Pu M.; Wu Y.-D.; Zhou J. S. Enantioselective Intermolecular Heck and Reductive Heck Reactions of Aryl Triflates, Mesylates, and Tosylates Catalyzed by Nickel. Angew. Chem., Int. Ed. 2021, 60, 2828–2832. 10.1002/anie.202011036. PubMed DOI
Lin C.; Chen S.; Wang Y.; Gao F.; Shen L. Ni(ii)-Catalyzed intermolecular selective Heck-type arylation of unactivated alkenes with arylboronic acids. Org. Chem. Front. 2022, 9, 608–614. 10.1039/D1QO01579F. DOI
Matsubara R.; Jamison T. F. Nickel-Catalyzed Allylic Substitution of Simple Alkenes. J. Am. Chem. Soc. 2010, 132, 6880–6881. 10.1021/ja101186p. PubMed DOI PMC
Matsubara R.; Gutierrez A. C.; Jamison T. F. Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins. J. Am. Chem. Soc. 2011, 133, 19020–19023. 10.1021/ja209235d. PubMed DOI PMC
Chen Y.-G.; Shuai B.; Xu X.-T.; Li Y.-Q.; Yang Q.-L.; Qiu H.; Zhang K.; Fang P.; Mei P.-S. Nickel-catalyzed Enantioselective Hydroarylation and Hydroalkenylation of Styrenes. J. Am. Chem. Soc. 2019, 141, 3395–3399. 10.1021/jacs.8b13524. PubMed DOI
Bhakta S.; Ghosh T. Emerging Nickel Catalysis in Heck Reactions: Recent Developments. Adv. Synth. Catal. 2020, 362, 5257–5274. 10.1002/adsc.202000820. DOI
Saper N. I.; Ohgi A.; Small D. W.; Semba K.; Nakao Y.; Hartwig J. Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions. Nat. Chem. 2020, 12, 276–283. 10.1038/s41557-019-0409-4. PubMed DOI PMC
Bhakta S.; Ghosh T. Nickel-Catalyzed Cascade Reactions. Eur. J. Org. Chem. 2021, 29, 4201–4215. 10.1002/ejoc.202100660. DOI
Zhang Y.; Ma J.; Chen J.; Meng L.; Liang Y.; Zhu S. A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates. Chem. 2021, 7, 3171–3188. 10.1016/j.chempr.2021.10.015. DOI
Bhakta S.; Ghosh T. Nickel-catalyzed hydroarylation reaction: a useful tool in organic synthesis. Org. Chem. Front. 2022, 9, 5074–5103. 10.1039/D2QO00826B. DOI
Lin J.; Wu C.; Tian X. Nickel-Catalyzed Cascade Reaction of 2-Vinylanilines with gem-Dichloroalkenes. Org. Lett. 2022, 24, 4855–4859. 10.1021/acs.orglett.2c01492. PubMed DOI
Boldrini G. P.; Savoia D.; Tagliavini E.; Trombini C.; Ronchi A. U. Nickel-catalyzed coupling of activated alkenes with organic halides. J. Organomet. Chem. 1986, 301, C62–C64. 10.1016/0022-328X(86)80050-X. DOI
Mondal S.; Debnath S.; Das B. Synthesis of seven-membered fused sultones by reductive Heck cyclization: an investigation for stereochemistry through DFT study. Tetrahedron 2015, 71, 476–486. 10.1016/j.tet.2014.11.068. DOI
Mondal S.; Debnath S. Regioselective and Stereoselective Synthesis of Pyridine-Fused Benzoxepine Derivatives by Intramolecular Reductive Heck Cyclization. J. Heterocyclic Chem. 2016, 53, 80–88. 10.1002/jhet.2357. DOI
Ghosh T. Nickel-catalyzed regioselective access to dibenzo[c,f]oxocine framework via reductive Heck reaction. Synth. Commun. 2018, 48, 1338–1345. 10.1080/00397911.2018.1445865. DOI
Bhakta S.; Ghosh T. Nickel Nanocatalysis: An Efficient Tool for Heck Reaction. ChemCatChem. 2021, 13, 828–835. 10.1002/cctc.202001425. DOI
Cheng Z.; Guo J.; Lu Z. Recent advances in metal-catalysed asymmetric sequential double hydrofunctionalization of alkynes. Chem. Commun. 2020, 56, 2229–2239. 10.1039/D0CC00068J. PubMed DOI
Zheng Y.; Zi W. Transition-metal catalyzed enantioselective hydrofunctionalization of alkynes. Tetrahedron Lett. 2018, 59 (23), 2205–2213. 10.1016/j.tetlet.2018.04.057. DOI
Hamada M.; Adachi K.; Hikawa H.; Yokoyama Y. Synthesis of a Key Intermediate for the Preparation of FTY720 Analogs. Chem. Pharm. Bull. 2012, 60, 1395–1398. 10.1248/cpb.c12-00477. PubMed DOI
Donets P. A.; Eycken E. V. V. Efficient Synthesis of the 3-Benzazepine Framework via Intramolecular Heck Reductive Cyclization. Org. Lett. 2007, 9, 3017–3020. 10.1021/ol071079g. PubMed DOI
Majumdar K. C.; Chakravorty S.; Ghosh T.; Sridhar B. Palladium-Mediated Reductive Heck Cyclization for the Formation of Dibenzoazepinone Framework. Synlett 2009, 2009, 3127–3130. 10.1055/s-0029-1218298. DOI
Armstrong M. K.; Lalic G. Differential Dihydrofunctionalization of Terminal Alkynes: Synthesis of Benzylic Alkyl Boronates Through Reductive Three-Component Coupling. J. Am. Chem. Soc. 2019, 141 (15), 6173–6179. 10.1021/jacs.9b02372. PubMed DOI PMC
Reed A. E.; Curtiss L. A.; Weinhold F. Chem. Rev. 1988, 88, 899–926. 10.1021/cr00088a005. DOI
Weber J.; Siddiqui M. A.; Wagstaff A. J.; McCormack P. L. Low-Dose Doxepin In the Treatment of Insomnia. CNS Drugs. 2010, 24, 713–720. 10.2165/11200810-000000000-00000. PubMed DOI
Shimamura T.; Shiroishi M.; Weyand S.; Tsujimoto H.; Winter G.; Katritch V.; Abagyan R.; Cherezov V.; Liu W.; Won Han G.; Kobayashi T.; Stevens R. C.; Iwata S. Structure of the human histamine H1 receptor complex with doxepin. Nature 2011, 475, 65–70. 10.1038/nature10236. PubMed DOI PMC
Wang D.; Guo Q.; Wu Z.; Li M.; He B.; Du Y.; Zhang K.; Tao Y. Molecular mechanism of antihistamines recognition and regulation of the histamine H1 receptor. Nat. Commun. 2024, 15, 84.10.1038/s41467-023-44477-4. PubMed DOI PMC
Xu Y.; Zhang Z.; Shi J.; Liu X.; Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. Ara. J. Chem. 2021, 14, 10303710.1016/j.arabjc.2021.103037. DOI
Košak U.; Knez D.; Coquelle N.; Brus B.; Pišlar A.; Nachon F.; Brazzolotto X.; Kos J.; Colletier J.-P.; Gobec S. N-Propargylpiperidines with naphthalene-2-carboxamide or naphthalene-2-sulfonamide moieties: Potential multifunctional anti-Alzheimer’s agents. Bioor. Med. Chem. 2017, 25, 633–645. 10.1016/j.bmc.2016.11.032. PubMed DOI