High frequency of point mutations in the nitroreductase 4 and 6 genes of Trichomonas vaginalis associated with metronidazole resistance
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
39584737
DOI
10.14411/fp.2024.021
PII: 2024.021
Knihovny.cz E-zdroje
- Klíčová slova
- clinical samples., dysfunctional enzyme, genital infection, protein polymorphism, refractory treatment, trichomoniasis,
- MeSH
- antiprotozoální látky farmakologie MeSH
- bodová mutace * MeSH
- léková rezistence * MeSH
- lidé MeSH
- metronidazol * farmakologie MeSH
- nitroreduktasy * genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- trichomonádová vaginitida parazitologie MeSH
- Trichomonas vaginalis * genetika účinky léků enzymologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Chile MeSH
- Názvy látek
- antiprotozoální látky MeSH
- metronidazol * MeSH
- nitroreduktasy * MeSH
- protozoální proteiny MeSH
Trichomoniasis, a globally distributed sexually transmitted infection, is caused by the urogenital parasite Trichomonas vaginalis Donné, 1836 affecting both women and men. The treatment of choice is metronidazole (MTZ). In the present study, 15 samples of vaginal discharge and urine were analysed by sequencing nitroreductase genes (ntr4 and ntr6). An in silico model was structured to illustrate the location of point mutations (PM) in the protein. The ntr4 gene presented four PMs: G76C (10/10), C213G (9/10), C318A (5/10) and G424A (1/10), while the ntr6 gene had eight PMs; G593A (13/13) the most frequent, G72T and G627C, both in 8/13. The PM C213G and A438T generated a stop codon causing a truncated nitroreductase 4 and 6 protein. Docking analysis demonstrated that some models had a decrease in binding affinity to MTZ (p < 0.0001). A high frequency of mutations was observed in the samples analysed that could be associated with resistance to MTZ in Chile.
Zobrazit více v PubMed
Appaneal H.J., Caffrey A.R., LaPlante K.L. 2019: What is the role for metronidazole in the treatment of Clostridium difficile infection? Results from a national cohort study of veterans with initial mild disease. Clin. Infect. Dis. 69: 1288-1295. PubMed DOI
Armstrong E., Hemmerling A., Miller S., Burke K.E., Newmann S.J., Morris S.R., Reno H., Huibner S., Kulikova M., Liu R., Crawford E.D., Castaneda G.R., Nagelkerke N., Bryan Coburn B., Cohen C.R., Rupert Kaul R. 2022: Metronidazole treatment rapidly reduces genital inflammation through effects on bacterial vaginosis associated bacteria rather than lactobacilli. J. Clin. Invest. 132: e152930. PubMed DOI
Belfort I.K.P., Cunha A.P.A., Mendes F.P.B., Galvao-Moreira L.V., Lemos R.G., de Lima Costa L.H., Monteiro P., Ferreira M.B., Bastos dos Santos G.R., Costa J.L., de Sa Ferreira A., Brito L.G.O., Brito L.M.O., Vidal F.C.B., Monteiro S.C.M. 2021: Trichomonas vaginalis as a risk factor for human papillomavirus: a study with women undergoing cervical cancer screening in a northeast region of Brazil. BMC Women's Health 21: 174. PubMed DOI
Bradic M., Carlton J.M. 2018: Does the common sexually transmitted parasite Trichomonas vaginalis have sex? PLoS Pathogens 14: e1006831. PubMed DOI
Bradic M., Warring S.D., Tooley G.E., Scheid P., Secor W.E., Land K.M., Huang P.J., Chen T.W., Lee C.C., Tang P., Sullivan S.A., Carlton J.M. 2017: Genetic indicators of drug resistance in the highly repetitive genome of Trichomonas vaginalis. Genome Biol. Evol. 9: 1658-1672. PubMed DOI
Conrad M., Zubacova Z., Dunn L.A., Upcroft J., Sullivan S.A., Tachezy J., Carlton J.M. 2011: Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Mol. Biochem. Parasitol. 175: 30-38. PubMed DOI
Dingsdag S.A., Hunter N. 2018: Metronidazole: an update on metabolism, structure- cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 73: 265-279. PubMed DOI
Dunne R.L., Dunn L.A., Upcroft P., O'Donoghue P.J., Upcroft J.A. 2003: Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res. 13: 239-249. PubMed DOI
Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021: AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 61: 3891-3898. PubMed DOI
Edgar R.C. 2004: MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32: 1792-1797. PubMed DOI
Edwards T., Burke P., Smalley H., Hobbs G. 2016: Trichomonas vaginalis: clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol. 42: 406-417.
Garber G.E. 2005: The laboratory diagnosis of Trichomonas vaginalis. Can. J. Infect. Dis. Med. Microbiol. 16: 35-38. PubMed DOI
Gwenin C.D., Kalaji M., Williams P.A., Kay C.M. 2010: A kinetic analysis of three modified novel nitroreductases. Biodegradation 22: 463-474. PubMed DOI
Halgren T.A. 1996: Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17: 616-641. DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Židek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. 2021: Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589. PubMed DOI
Kengne P., Veas F., Vidal N., Rey J.L., Cuny G. 1994: Trichomonas vaginalis: repeated DNA target for highly sensitive and specific polymerase chain reaction diagnosis. Cell. Mol. Biol. 40: 819-831.
Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B.A., Wang J., Yu B., Zhang J., Bryant S.H. 2016: PubChem substance and compound databases. Nucl. Acids Res. 44: D1202-D1213. PubMed DOI
Kirkcaldy R.D., Augostini P., Asbel L.E., Bernstein K.T., Kerani R.P., Mettenbrink C.J., Pathela P., Schwebke J.R., Secor W.E., Workowski K.A., Davis D., Braxton J., Weinstock H.S. 2012: Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009-2010. Emerg. Infect. Dis. 18: 939-943.
Kissinger P.J., Gaydos C.A., Sena A.C., Scott McClelland R., Soper D., Secor W.E., Legendre D., Workowski K.A., Muzny C.A. 2022: Diagnosis and management of Trichomonas vaginalis: summary of evidence reviewed for the 2021. Centers For Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 74: S152-S161.
Kusdian G., Gould S.B. 2014: The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol. Biochem. Parasitol. 198: 92-99. PubMed DOI
Liochev S.I., Hausladen A., Fridovich I. 1999: Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc. Natl. Acad. Sci. USA. 96: 3537-3539. PubMed DOI
Mammen-Tobin A., Wilson J.D. 2005: Management of metronidazole-resistant Trichomonas vaginalis - a new approach. Int. J. STD AIDS 16: 488-490. PubMed DOI
Marques-Silva M., Lisboa C., Gomes N., Rodrigues A.G. 2021: Trichomonas vaginalis and growing concern over drug resistance: a systematic review. J. Eur. Acad. Dermatol. Venereol. 35: 2007-2021. PubMed DOI
McClelland R.S., Sangare L., Hassan W.M., Lavreys L., Mandaliya K., Kiarie J., Ndinya-Achola J., Jaoko W., Baeten J.M. 2007: Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J. Infect. Dis. 195: 698-702. PubMed DOI
Melo A., Ossa X., Fetis G., Lazo L., Bustos L., Fonseca-Salamanca F. 2021: Concordance between clinical and laboratory diagnosis of abnormal vaginal discharge in Chilean women. Rev. Bras. Ginecol. Obstet. 43: 600-607. PubMed DOI
Mirdita M., Schutze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. 2022: ColabFold: making protein folding accessible to all. Nat. Methods 19: 679-682. PubMed DOI
Morikawa E., Mudau M., Olivier D., de Vos L., Joseph Davey D., Price C., McIntyre J.A., Peters R.P., Klausner J.D., Medina-Marino A. 2018: Acceptability and feasibility of integrating point-of-care diagnostic testing of sexually transmitted infections into a South African antenatal care program for HIV-infected pregnant women. Infect. Dis. Obstet. Gynecol. 2018: 3946862. PubMed DOI
Mtshali A., Ngcapu S., Govender K., Sturm A.W., Moodley P., Joubert B.C. 2022: In vitro effect of 5-nitroimidazole drugs against Trichomonas vaginalis clinical isolates. Microbiol. Spectr. 10: e0091222. PubMed DOI
Mzenda T. 2021: Identification of mutations in genes associated with metronidazole resistance and susceptibility in Trichomonas vaginalis. PhD thesis, University of KwaZulu-Natal, 68 pages.
Ngobese B., Singh R., Han K.S.S., Tinarwo P., Mabaso N., Abbai N.S. 2022: Detection of metronidazole resistance in Trichomonas vaginalis using uncultured vaginal swabs. Parasitol. Res. 121: 2421-2432. PubMed DOI
O'Boyle N., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. 2011: Open Babel: an open chemical toolbox. J. Cheminform. 3: 33. PubMed DOI
Pal D., Banerjee S., Cui J., Schwartz A., Ghosh S.K., Samuelson J. 2009: Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrob. Agents Chemother. 53: 458-464. PubMed DOI
Paulish-Miller T.E., Augostini P., Schuyler J.A., Smith W.L., Mordechai E., Adelson M.E., Gygax S.E., Secor W.E., Hilbert D.W. 2014: Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob. Agents Chemother. 58: 2938-2943. PubMed DOI
Penning T., Su A.L., El-Bayoumy K. 2022: Nitroreduction: a critical metabolic pathway for drugs, environmental pollutants, and explosives. Chem. Res. Toxicol. 35: 1747-1765. PubMed DOI
Roldan M.D., Perez-Reinado E., Castillo F., Moreno-Vivian C. 2008: Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 32: 474-500. PubMed DOI
Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. 1988: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491. DOI
Schilcrot F.F., Cabello E.S., Pérez S.B., Díaz R.B., Pinochet A.H. 2016: Norma de Profilaxis, Diagnóstico y Tratamiento de las Infecciones de Transmisión Sexual (ITS). Ministerio de Salud, Chile, 112 pp.
Schwebke J.R., Barrientes F.J. 2006: Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob. Agents Chemother. 50: 4209-4210. PubMed DOI
Sisson G., Goodwin A., Raudonikiene A., Hughes N.J, Mukhopadhyay A.K., Berg D.E., Hoffman P.S. 2002: Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrob. Agents Chemother. 46: 2116-2123. PubMed DOI
Spotin A., Eghtedar S.T., Shahbazi A., Salehpour A., Sarafraz S., Shariatzadeh S.A., Mahami-Oskouei M. 2016: Molecular characterization of Trichomonas vaginalis strains based on identifying their probable variations in asymptomatic patients. Iran J. Parasitol. 11: 507-514.
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. PubMed DOI
Thomas C., Gwenin C.D. 2021: The role of nitroreductases in resistance to nitroimidazoles. Biology 10: 388. PubMed DOI
Thompson J.D., Higgins D.G., Gibson T.J. 1994: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680. PubMed DOI
Van Gerwen O.T., Camino A.F., Sharma J., Kissinger P.J., Muzny C.A. 2021: Epidemiology, natural history, diagnosis, and treatment of Trichomonas vaginalis in men. Clin. Infect. Dis. 73: 1119-1124. PubMed DOI
Waters L.J., Dave S.S., Deayton J.R., French P.D. 2005: Recalcitrant Trichomonas vaginalis infection - a case series. Int. J. STD AIDS 16: 505-509. PubMed DOI
Wilkinson S.R., Bot C., Kelly J.M., Hall B.S. 2011: Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr. Top. Med. Chem. 11: 2072-2084. PubMed DOI
Yang H.Y., Su R.Y., Chung C.H., Huang K.Y., Lin H.A., Wang J.Y., Chen C.C., Chien W.C., Lin H.C. 2022: Association between trichomoniasis and prostate and bladder diseases: a population-based case - control study. Sci. Rep. 12: 15358. PubMed DOI
Yarlett N., Yarlett N.C., Lloyd D. 1986: Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem. Pharmacol. 35: 1703-1708. PubMed DOI
Zhang Z., Kang L., Wang W., Zhao X., Li Y., Xie Q., Wang S., He T., Li H., Xiao T., Chen Y., Zuo S., Kong L., Li P., Li X. 2018: Prevalence and genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in Xinxiang City, Henan Province, China. Parasit. Vectors 11: 124. PubMed DOI
Zhang Z., Li Y., Lu H., Li D., Zhang R., Xie X., Guo L., Hao L., Tian X., Yang Z., Wang S., Mei X. 2022: A systematic review of the correlation between Trichomonas vaginalis infection and infertility. Acta Trop. 236: 106693. PubMed DOI