protein polymorphism
Dotaz
Zobrazit nápovědu
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with patients having unresectable or metastatic disease at diagnosis, with poor prognosis and very short survival. Given that genetic variation within autophagy-related genes influences autophagic flux and susceptibility to solid cancers, we decided to investigate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-related genes could influence the risk of developing PDAC in three large independent cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls. The meta-analysis of these populations identified, for the first time, the association of the BIDrs9604789 variant with an increased risk of developing the disease (ORMeta = 1.31, p = 9.67 × 10-6). We also confirmed the association of TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89, p = 6.27 × 10-8 and OR = 1.16, p = 2.74 × 10-5). Although it is known that BID induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+ Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 × 10-4 and p = 1.56 × 10-3), but also decreased levels of CD4+ T regulatory cells (p = 7.86 × 10-4). These results were in agreement with research suggesting that the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are transcription factors involved in modulating specific subsets of regulatory T cells. In conclusion, this study identifies BID as new susceptibility locus for PDAC and confirms previous studies suggesting that the TP63 gene is involved in the development of PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus in PDAC.
- MeSH
- autofagie * genetika MeSH
- běloši genetika MeSH
- duktální karcinom slinivky břišní * genetika patologie MeSH
- forkhead transkripční faktory MeSH
- genetická predispozice k nemoci * MeSH
- hepatocytární jaderný faktor 3-alfa genetika metabolismus MeSH
- jednonukleotidový polymorfismus * MeSH
- kohortové studie MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádorové supresorové proteiny * genetika MeSH
- nádory slinivky břišní * genetika patologie MeSH
- studie případů a kontrol MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alternativní sestřih genetika účinky léků MeSH
- androgenní receptory * metabolismus genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty * genetika metabolismus patologie farmakoterapie MeSH
- protein - isoformy genetika metabolismus MeSH
- protein-serin-threoninkinasy genetika metabolismus antagonisté a inhibitory MeSH
- regulace genové exprese u nádorů * účinky léků MeSH
- serin-arginin sestřihové faktory * metabolismus genetika MeSH
- sestřih RNA genetika MeSH
- tyrosinkinasy * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Recent advances in avian melanogenesis have pinpointed multiple genetic loci associated with color polymorphisms, predominantly in the plumage of chickens, quails, and pigeons. However, the genetic basis of melaninization in parrot plumage remains elusive. Previously, we showed that mutations in the melanosomal ion-transporter SLC45A2 lead to a complete loss of blue structural color in green parrot feathers, leaving only yellow psittacofulvin. Yet, several color morphs involving partial or complete melanin reduction are common in captive-bred parrots that have not been studied. To bridge this gap, we investigated two new color morphs of parrot plumage: non-sex-linked recessive lutino (NSL), which entirely inhibits blue structural coloration, and the sex-linked recessive cinnamon, which reduces the intensity of blue structural coloration. Our genotypic analysis revealed that tyrosinase (TYR) variants are responsible for the NSL phenotype in Fischer's lovebird and green-cheeked parakeet, while tyrosinase related protein 1 (TYRP1) variants are associated with the cinnamon phenotype in the rose-ringed parakeet. When transfected into HEK293T cells, the candidate substitutions significantly affected tyrosinase enzymatic activity. This study underscores tyrosinase and related enzymes' role in parrot feather coloration, enhancing our understanding of avian melanogenesis as well as the conserved functions of melanogenic components across different species.
- MeSH
- fenotyp MeSH
- lidé MeSH
- melaniny metabolismus MeSH
- oxidoreduktasy * metabolismus genetika MeSH
- papouškovití * genetika metabolismus MeSH
- peří * enzymologie metabolismus MeSH
- pigmentace * genetika MeSH
- ptačí proteiny * metabolismus genetika MeSH
- tyrosinasa * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The etiopathogenesis of atopic dermatitis is complicated, and it includes aspects such as dysfunction of the skin barrier, changes in immune responses, IgE-mediated hypersensitivity, and many characteristics of the environment. Regarding skin barrier dysfunction, a number of genetic changes have been described. This genetic predisposition could be related to the phenotypes of atopic dermatitis. AIM: In this study, several polymorphisms in five proinflammatory genes were associated with certain phenotypes of AD patients (genotype-phenotype study). METHODS: In total, 89 unrelated AD Czech (Caucasian) patients were genotyped regarding five proinflammatory gene polymorphisms (angiotensinogen AGT M235T, AGT-6 G/A, TNF-α-238 G/A, TNF-β Fok1, IL-6-174 C/G and IL-6-596 G/A). Genotyping was performed using PCR and restriction analysis. For phenotypes, patients' sex, age and personal and family history of atopy, aero- and food allergies and other complex diseases were evaluated. RESULTS: A significant association with transepidermal water loss (TEWL) measured on the forearm was found with the AGT M235T polymorphism (p = 0.02). For the AG genotype of TNF-α-238 G/A, a six-times higher risk for a family history of diabetes mellitus compared to other examined aspects of family history was found (p = 0.02). A family history of thyreopathy was associated with the IL-6-174 G/C polymorphism when compared to a family history of other complex diseases. The GG genotype had a ten-times higher risk for a family history of thyreopathy compared to the other genotypes (p = 0.004). This result was highly specific (0.914). The GG genotype of IL-6-596 G/A was associated with a family history of thyreopathy, with the same result (p = 0.004). Moreover, the G allele of IL-6-174 G/C was associated with a family history of thyreopathy compared to AD patients without a positive family history of complex diseases (p = 0.03). In AD men, the MM genotype of the AGT M235T gene was found to be associated with food allergies (p = 0.004). This result was highly sensitive (0.833). A family history of cardiovascular disease in AD men was associated with AGT-6 G/A variability. The A allele was found to be six times more frequent in patients with a positive family history of cardiovascular disease (p = 0.02, with high sensitivity and specificity (0.700 and 0.735, respectively)). A family history of diabetes mellitus was associated with the TNF-β Fok1 polymorphism, where the B1 allele was almost six times more frequent in AD men with a positive family history of diabetes mellitus (p = 0.02), with high sensitivity (0.85). A significant association between TEWL measured on the forearm and the AGT M235T polymorphism was found when AD women were carriers of the MM genotype, with a median of 25 and range 4-61; those patients with the MT genotype had a median of 10 and range of 0.3-39; and patients with the TT genotype had a median of 5 and range of 3-40, p = 0.003. The polymorphism AGT-6 G/A was associated with different ages of eczema onset. The AG genotype was almost nine times more risky for the youngest group (0-7 years) compared to the oldest group (more than 18 years) (p = 0.02), with high specificity for this result. CONCLUSIONS: Our results in the field of cytokine signaling in the immune system in patients with atopic dermatitis are in agreement with those of GWASs. We suggest that cost-effective and simple PCR tests may be the best approach for the rapid and optimal collection of valid genetic information in clinical practice.
- MeSH
- atopická dermatitida * genetika patologie MeSH
- dospělí MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genotyp MeSH
- interleukin-6 genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- TNF-alfa genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Chronic bronchitis is increasingly reported as a healthcare challenge in clinical settings partially due to the disease's bad prognosis and unresponsiveness to therapy, including the ineffectiveness of glucocorticoids. The ineffectiveness could have a link with genetic polymorphism of receptor genes resulting in inappropriate glucocorticoid pharmacodynamics. We sought to identify the role of gene polymorphism in the response of patients with chronic bronchitis to prednisolone therapy. To do so, a total of 60 newly diagnosed chronic bronchitis patients enrolled in the present study. Prednisolone at a dose of 30mg/day for two weeks was given and respiratory parameters [forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC were measured before and after therapy. Blood samples were withdrawn for genetic profiling of genes involved in glucocorticoids pharmacodynamics, including BCII (rs41423247), N363S (rs56149945), and ER22/23EK (rs6189/rs6190) measured for their homozygous versus heterozygous gene splice variants.Results: Gene splice variants for BCII (rs41423247), N363S (rs56149945), and ER22/23EK (rs6189/rs6190) homozygous (73.3%, 98.7%, and 95%) represented a higher percentage than heterozygous (26.7%, 1.7%, and 5%). The respiratory parameters FEV1, FVC, and FEV1/FVC have shown significantly (p<0.05) better values at baseline in homozygous versus heterozygous, correspondingly, the responsiveness to therapy has shown significantly (p<0.05) better values in homozygous versus heterozygous.Conclusion: The study has provided a good template for genetic behaviour toward individualised medicine in our locality providing that these genes could be a cornerstone for discovering issues related to the pharmacodynamics profiling of drugs in clinical settings.
- MeSH
- chronická bronchitida * diagnóza genetika MeSH
- glukokortikoidy farmakologie MeSH
- lidé MeSH
- polymerázová řetězová reakce metody MeSH
- polymorfismus genetický genetika MeSH
- prednisolon farmakologie terapeutické užití MeSH
- protein - isoformy genetika MeSH
- receptory glukokortikoidů * genetika účinky léků MeSH
- respirační funkční testy metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- klinická studie MeSH
- práce podpořená grantem MeSH
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
- MeSH
- Alzheimerova nemoc genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kognitivní dysfunkce * genetika MeSH
- lidé MeSH
- longitudinální studie MeSH
- neuropsychologické testy MeSH
- P-glykoproteiny genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
AIMS: The cardiac conduction system (CCS) is progressively specified during development by interactions among a discrete number of transcription factors (TFs) that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain TFs with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity; however, the basis for these alterations has not been established. Here, we studied the role of Meis TFs in cardiomyocyte development and function during mouse development and adult life. METHODS AND RESULTS: We studied Meis1 and Meis2 conditional deletion mouse models that allowed cardiomyocyte-specific elimination of Meis function during development and inducible elimination of Meis function in cardiomyocytes of the adult CCS. We studied cardiac anatomy, contractility, and conduction. We report that Meis factors are global regulators of cardiac conduction, with a predominant role in the CCS. While constitutive Meis deletion in cardiomyocytes led to congenital malformations of the arterial pole and atria, as well as defects in ventricular conduction, Meis elimination in cardiomyocytes of the adult CCS produced sinus node dysfunction and delayed atrio-ventricular conduction. Molecular analyses unravelled Meis-controlled molecular pathways associated with these defects. Finally, we studied in transgenic mice the activity of a Meis1 human enhancer related to an single-nucleotide polymorphism (SNP) associated by Genome-wide association studies (GWAS) to PR (P and R waves of the electrocardiogram) elongation and found that the transgene drives expression in components of the atrio-ventricular conduction system. CONCLUSION: Our study identifies Meis TFs as essential regulators of the establishment of cardiac conduction function during development and its maintenance during adult life. In addition, we generated animal models and identified molecular alterations that will ease the study of Meis-associated conduction defects and congenital malformations in humans.
- MeSH
- akční potenciály MeSH
- fenotyp MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- kardiomyocyty * metabolismus patologie MeSH
- kontrakce myokardu MeSH
- myši knockoutované MeSH
- nodus sinuatrialis metabolismus patofyziologie MeSH
- převodní systém srdeční * metabolismus patofyziologie růst a vývoj MeSH
- srdeční arytmie patofyziologie metabolismus genetika MeSH
- srdeční frekvence * MeSH
- transkripční faktor Meis1 * genetika metabolismus nedostatek MeSH
- věkové faktory MeSH
- vrozené srdeční vady metabolismus genetika patofyziologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: This study aimed to examine changes in the repertoire of functional T-cells specific for six leukemia-associated antigens (LAA), including WT1, PRAME, MUC1, CCNA1, NPM1, and NPM1c, during immune reconstitution following allogeneic transplantation of hematopoietic stem cells (HSCT) in patients with acute myeloid leukemia. PATIENTS & METHODS: LAA-specific T cell response was measured by ELISPOT- IFNγ and intracellular cytokine staining in 47 patients before starting conditioning therapy (baseline) and 7 months after HSCT. RESULTS: The positive cumulative LAA-specific T cell response before HSCT was associated with a decreased risk of relapse after HSCT. The prevalent genetic aberration - an internal tandem duplication of Fms 3 - related receptor tyrosine kinase, which has been previously implicated in immune escape mechanisms, is presented here for the first time as a factor associated with the absence of an adaptive T cell response against multiple LAAs. T-cell specific responses against wild-type and mutated NPM1 antigens were less frequent in the study cohort and did not correlate with mutations in the NPM1 gene. CONCLUSIONS: Our results showed that the T-cell response to LAA can be reconstituted after HSCT. Measurement of functional pre-transplant T-cell responses against multiple LAAs could help to find patients with an increased risk of relapse.
- MeSH
- akutní myeloidní leukemie * terapie imunologie genetika MeSH
- antigeny nádorové imunologie MeSH
- dospělí MeSH
- homologní transplantace MeSH
- jaderné proteiny genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mucin 1 genetika imunologie MeSH
- mutace * MeSH
- nukleofosmin * MeSH
- proteiny WT1 imunologie genetika MeSH
- recidiva MeSH
- senioři MeSH
- T-lymfocyty * imunologie MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- tyrosinkinasa 3 podobná fms * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
- MeSH
- DNA vazebné proteiny MeSH
- epigeneze genetická * genetika MeSH
- epigenom * genetika MeSH
- karcinom z renálních buněk * genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- metylace DNA * genetika MeSH
- nádorový supresorový protein VHL genetika MeSH
- nádory ledvin * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- transkripční faktory MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: This cross-sectional study investigated the relationship between genetic variations in monocarboxylate transporter genes and blood lactate production and removal after high-intensity efforts in humans. The study was conducted to explore how genetic variations in the MCT1, MCT2, and MCT4 genes influenced lactate dynamics and to advance the field of sports genetics by pinpointing critical genetic markers that can enhance athletic performance and recovery. METHODS: 337 male athletes from Poland and the Czech Republic underwent two intermittent all-out Wingate tests. Before the tests, DNA samples were taken from each participant, and SNP (single nucleotide polymorphism) analysis was carried out. Two intermittent all-out tests were implemented, and lactate concentrations were assessed before and after these tests. RESULTS: Sprinters more frequently exhibited the haplotype TAC in the MCT2 gene, which was associated with an increase in the difference between maximum lactate and final lactate concentration. Additionally, this haplotype was linked to higher maximum lactate concentration and was more frequently observed in sprinters. The genotypic interactions AG/T- and GGxT- (MCT1 rs3789592 x MCT4 rs11323780), TTxTT (MCT1 rs12028967 x MCT2 rs3763979), and MCT1 rs7556664 x MCT4 rs11323780 were all associated with an increase in the difference between maximum lactate concentration and final lactate concentration. Conversely, the AGxGG (MCT1 rs3789592 x MCT2 rs995343) interaction was linked to a decrease in this difference. The relationship between maximum lactate concentration and genotypic interactions can be observed as follows: when ATxTT (MCT2 rs3763980 x MCT4 rs11323780) or CTxCT (MCT1 rs10857983 x MCT2 rs3763979) genotypic combinations are present, it leads to a decrease in maximum lactate concentration. Similarly, the combination of CTxCT (MCT1 rs4301628 x MCT2 rs3763979), CT x TT (MCT1 rs4301628 x MCT4 rs11323780), and CTxTT (MCT1 rs4301628 x MCT2 rs3763979) results in decreased maximum lactate concentration. CONCLUSIONS: The TAC haplotype (rs3763980, rs995343, rs3763979) in the MCT2 gene is associated with altered lactate clearance in sprinters, potentially affecting performance and recovery by elevating post-exercise lactate concentrations. While MCT4 rs11323780 is also identified as a significant variant in lactate metabolism, suggesting its role as a biomarker for sprinting performance, further investigation is necessary to clarify underlying mechanisms and consider additional factors. Based on elite male athletes from Poland and the Czech Republic, the study may not generalize to all sprinters or diverse athletic populations. Although genetic variants show promise as biomarkers for sprinting success, athletic performance is influenced by a complex interplay of genetics, environment, and training extending beyond MCT genes.
- MeSH
- dospělí MeSH
- genotyp MeSH
- haplotypy * MeSH
- jednonukleotidový polymorfismus * MeSH
- kinetika MeSH
- kyselina mléčná * krev metabolismus MeSH
- lidé MeSH
- mladý dospělý MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus MeSH
- průřezové studie MeSH
- sportovci MeSH
- svalové proteiny * genetika metabolismus MeSH
- symportéry * genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH