Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
39589302
PubMed Central
PMC11627267
DOI
10.33549/physiolres.935481
PII: 935481
Knihovny.cz E-resources
- MeSH
- Pulmonary Artery metabolism physiopathology drug effects MeSH
- Vascular Resistance physiology MeSH
- Hypoxia * physiopathology metabolism MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Animals, Newborn MeSH
- Nitric Oxide metabolism MeSH
- Pulmonary Circulation * physiology MeSH
- Sex Characteristics MeSH
- Sex Factors MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitric Oxide MeSH
Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females. Moreover, simultaneous administration of inhaled NO (iNO) during PH exposure prevented adverse effects of PH on adult pulmonary vasculature in females. The present study showed that PH induced a significant increase in right ventricular pressure in males and females, and an enhanced sensitivity to acute hypoxia in females. PH significantly reduced acetylcholine-induced relaxation in pulmonary artery, to a greater extent in females than in males. PH led to right ventricular hypertrophy in adulthood, appearing earlier in males than in females. Morphometric measurements showed a significant increase in the number of 25-75-µm pulmonary vessels in male lungs following PH, probably resulting in increased pulmonary vascular resistance. The effects of prolonged hypoxia in adulthood differed between males and females. Perinatal iNO during PH prevented PH-induced alterations in the cardiopulmonary system, whereas perinatal iNO alone could have some adverse effects. Therefore, PH led to long-lasting alterations in the regulation of adult pulmonary circulation, which vary between males and females. In males, the increased pulmonary vascular resistance was associated with morphological changes besides functional alterations, whereas females showed an important pulmonary vascular dysfunction. Keywords: Perinatal hypoxia, Pulmonary circulation, Endothelium-dependent relaxation, Phosphodiesterases, Sex differences.
See more in PubMed
Barker DJ. In utero programming of cardiovascular disease. Theriogenology. 2000;53:555–574. doi: 10.1016/S0093-691X(99)00258-7. PubMed DOI
Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353:2205–2207. doi: 10.1016/S0140-6736(98)08352-4. PubMed DOI
Grover RF, Vogel JHK, Voigt GC, Blount SG. Reversal of high altitude pulmonary hypertension. Am J Cardiol. 1966;18:928–932. doi: 10.1016/0002-9149(66)90443-7. PubMed DOI
Caslin A, Heath D, Smith P. Influence of hypobaric hypoxia in infancy on the subsequent development of vasoconstrictive pulmonary vascular disease in the Wistar albino rat. Journal of Pathology. 1991;163:133–141. doi: 10.1002/path.1711630209. PubMed DOI
Hakim TS, Mortola JP. Pulmonary vascular resistance in adult rats exposed to hypoxia in the neonatal period. Can J Physiol Pharmacol. 1990;68:419–424. doi: 10.1139/y90-059. PubMed DOI
Hampl V, Herget J. Perinatal hypoxia increases hypoxic pulmonary vasoconstriction in adult rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis. 1990;142:619–624. doi: 10.1164/ajrccm/142.3.619. PubMed DOI
Tang JR, Le Cras TD, Morris KG, Jr, Abman SH. Brief perinatal hypoxia increases severity of pulmonary hypertension after reexposure to hypoxia in infant rats. Am J Physiol Lung Cell Mol Physiol. 2000;278:L356–364. doi: 10.1152/ajplung.2000.278.2.L356. PubMed DOI
Steenhorst JJ, Hirsch A, Verzijl A, Wielopolski P, de Wijs-Meijler D, Duncker DJ, Reiss IKM, Merkus D. Exercise and hypoxia unmask pulmonary vascular disease and right ventricular dysfunction in a 10- to 12-week-old swine model of neonatal oxidative injury. J Physiol. 2022;600:3931–3950. doi: 10.1113/JP282906. PubMed DOI PMC
Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev. 2000;80:1337–1372. doi: 10.1152/physrev.2000.80.4.1337. PubMed DOI
Lachmanova V, Hnilickova O, Povysilova V, Hampl V, Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci. 2005;77:175–182. doi: 10.1016/j.lfs.2004.11.027. PubMed DOI
Hodyc D, Johnson E, Skoumalova A, Tkaczyk J, Maxova H, Vizek M, Herget J. Reactive oxygen species production in the early and later stage of chronic ventilatory hypoxia. Physiol Res. 2012;61:145–151. doi: 10.33549/physiolres.932206. PubMed DOI
Koubsky K, Durisova J, Mikova D, Herget J. Chronic hypoxia inhibits tetrahydrobiopterin-induced NO production in rat lungs. Respir Physiol Neurobiol. 2013;185:547–552. doi: 10.1016/j.resp.2012.11.012. PubMed DOI
Hampl V, Bibova J, Banasova A, Uhlik J, Mikova D, Hnilickova O, Lachmanova V, Herget J. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2006;290:L11–20. doi: 10.1152/ajplung.00023.2005. PubMed DOI
Al-Hiti H, Chovanec M, Melenovsky V, Vajnerova O, Banasova A, Kautzner J, Herget J. L-arginine in combination with sildenafil potentiates the attenuation of hypoxic pulmonary hypertension in rats. Physiol Res. 2013;62:589–595. doi: 10.33549/physiolres.932463. PubMed DOI
Hampl V, Bibova J, Herget J. Perinatal history of hypoxia leads to lower vascular pressures and hyporeactivity to angiotensin II in isolated lungs of adult rats. Physiol Res. 2000;49:567–575. PubMed
Jakoubek V, Bibova J, Herget J, Hampl V. Chronic hypoxia increases fetoplacental vascular resistance and vasoconstrictor reactivity in the rat. Am J Physiol Heart Circ Physiol. 2008;294:H1638–1644. doi: 10.1152/ajpheart.01120.2007. PubMed DOI
Hampl V, Bibova J, Ostadalova I, Povysilova V, Herget J. Gender differences in the long-term effects of perinatal hypoxia on pulmonary circulation in rats. Am J Physiol Lung Cell Mol Physiol. 2003;285:L386–392. doi: 10.1152/ajplung.00389.2002. PubMed DOI
Marino M, Beny JL, Peyter AC, Bychkov R, Diaceri G, Tolsa JF. Perinatal hypoxia triggers alterations in K+ channels of adult pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007;293:L1171–1182. doi: 10.1152/ajplung.00126.2007. PubMed DOI
Marino M, Beny JL, Peyter AC, Diaceri G, Tolsa JF. Perinatal Hypoxia Enhances Cyclic Adenosine Monophosphate-mediated BKCa Channel Activation in Adult Murine Pulmonary Artery. J Cardiovasc Pharmacol. 2011;57:154–165. doi: 10.1097/FJC.0b013e3182016adf. PubMed DOI
Peyter AC, Muehlethaler V, Liaudet L, Marino M, Di Bernardo S, Diaceri G, Tolsa JF. Muscarinic receptor M1 and phosphodiesterase 1 are key determinants in pulmonary vascular dysfunction following perinatal hypoxia in mice. Am J Physiol Lung Cell Mol Physiol. 2008;295:L201–213. doi: 10.1152/ajplung.00264.2007. PubMed DOI
Peyter AC, Delhaes F, Diaceri G, Menetrey S, Tolsa JF. Perinatal nitric oxide therapy prevents adverse effects of perinatal hypoxia on the adult pulmonary circulation. Biomed Res Int. 2014;2014:949361. doi: 10.1155/2014/949361. PubMed DOI PMC
Gao Y, Cornfield DN, Stenmark KR, Thebaud B, Abman SH, Raj JU. Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ. 2016;6:407–425. doi: 10.1086/688890. PubMed DOI PMC
Fujita M, Mason RJ, Cool C, Shannon JM, Hara N, Fagan KA. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol. 2002;93:2162–2170. doi: 10.1152/japplphysiol.00083.2002. PubMed DOI
Mund SI, Stampanoni M, Schittny JC. Developmental alveolarization of the mouse lung. Dev Dyn. 2008;237:2108–2116. doi: 10.1002/dvdy.21633. PubMed DOI
Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol. 1998;18:786–793. doi: 10.1165/ajrcmb.18.6.3031. PubMed DOI
Morris H, Denver N, Gaw R, Labazi H, Mair K, MacLean MR. Sex differences in pulmonary hypertension. Clin Chest Med. 2021;42:217–228. doi: 10.1016/j.ccm.2020.10.005. PubMed DOI
Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99:675–691. doi: 10.1161/01.RES.0000243584.45145.3f. PubMed DOI
de Wijs-Meijler DPM, van Duin RWB, Duncker DJ, Scherrer U, Sartori C, Reiss IKM, Merkus D. Structural and functional changes of the pulmonary vasculature after hypoxia exposure in the neonatal period: a new swine model of pulmonary vascular disease. Am J Physiol Heart Circ Physiol. 2018;314:H603–H615. doi: 10.1152/ajpheart.00362.2017. PubMed DOI
de Wijs-Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease. Physiol Rep. 2018;6:e13889. doi: 10.14814/phy2.13889. PubMed DOI PMC
Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol. 2005;288:L213–226. doi: 10.1152/ajplung.00103.2004. PubMed DOI
Fei Q, Pan J, Zhang F, Lin Y, Yuan T. Comparison of Different Treatments of Persistent Pulmonary Hypertension of the Newborn: A Systematic Review and Network Meta-Analysis. Crit Care Med. 2024 doi: 10.1097/CCM.0000000000006227. PubMed DOI
D’Agostino A, Lanzafame LG, Buono L, Crisci G, D’Assante R, Leone I, De Vito L, Bossone E, Cittadini A, Marra AM. Modulating NO-GC Pathway in Pulmonary Arterial Hypertension. Int J Mol Sci. 2023:25. doi: 10.3390/ijms25010036. PubMed DOI PMC
Krawutschke C, Koesling D, Russwurm M. Cyclic GMP in vascular relaxation: export is of similar importance as degradation. Arterioscler Thromb Vasc Biol. 2015;35:2011–2019. doi: 10.1161/ATVBAHA.115.306133. PubMed DOI
Belleville-Rolland T, Sassi Y, Decouture B, Dreano E, Hulot JS, Gaussem P, Bachelot-Loza C. MRP4 (ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacol Res. 2016;107:381–389. doi: 10.1016/j.phrs.2016.04.002. PubMed DOI
Hara Y, Sassi Y, Guibert C, Gambaryan N, Dorfmuller P, Eddahibi S, Lompre AM, Humbert M, Hulot JS. Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J Clin Invest. 2011;121:2888–2897. doi: 10.1172/JCI45023. PubMed DOI PMC
de Oliveira MG, Passos GR, de Gomes ET, Leonardi GR, Zapparoli A, Antunes E, Monica FZ. Inhibition of multidrug resistance proteins by MK571 restored the erectile function in obese mice through cGMP accumulation. Andrology. 2023;11:611–620. doi: 10.1111/andr.13340. PubMed DOI
Kraehling JR, Sessa WC. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res. 2017;120:1174–1182. doi: 10.1161/CIRCRESAHA.117.303776. PubMed DOI PMC