IgG Antibody Titers Against Ascaris lumbricoides, Strongyloides stercolaris, and Toxocara canis in Venezuelan Patients with Asthma or COPD
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
G2005000389
FONACIT Venezuela
PubMed
39591259
PubMed Central
PMC11598297
DOI
10.3390/tropicalmed9110253
PII: tropicalmed9110253
Knihovny.cz E-zdroje
- Klíčová slova
- Ascaris lumbricoides, COPD, Giardia lamblia, IgE, Strongyloides stercolaris, Toxocara canis, asthma, atopy, eosinophils,
- Publikační typ
- časopisecké články MeSH
It has been suggested that parasitic infections, common in Latin American populations, may amplify the inflammatory response of the airways. There are several reports of atopic and asthmatic patients but few reports of parasitic infection in COPD patients. This study aimed to determine the prevalence of parasitic infections in COPD patients compared with atopic and asthmatic patients attending the Institute of Immunology outpatient clinics and the pneumology service of the University hospital. A case-control study was conducted compising 100 patients with bronchial asthma, 100 patients with COPD, 100 individuals with atopy without respiratory symptoms, and 100 healthy individuals. Serum-specific IgG antibodies against the parasites Ascaris lumbricoides (Al), Strongyloides stercolaris (Ss), and Toxocara canis (Tc) were measured by ELISA. IgE levels were used as an indirect indicator of atopy. Positive IgG for Al was observed in all groups, predominantly in the atopic cohort; Ss positiveness was recorded only in four COPD patients, and Tc positiveness was observed in all groups except in controls. Significant correlations exist between the values of Al and IgE in controls, atopic, and asthmatic patients without COPD. No correlation was found for Tc. IgE levels and the forced expiratory volume in 1 s (FEV1) correlate only in atopic and asthmatic patients. Parasitic infections are common in atopic patients and moderate and severe asthmatic and COPD patients. Anti-inflammatory treatment may be responsible for the increased frequency of infection in moderate and severe asthmatic and COPD patients.
Zobrazit více v PubMed
Manian P. Chronic obstructive pulmonary disease classification, phenotypes, and risk assessment. J. Thorac. Dis. 2019;11((Suppl. S14)):S1761–S1766. doi: 10.21037/jtd.2019.05.10. PubMed DOI PMC
COPD Foundation. [(accessed on 9 August 2024)]. Available online: https://www.copdfoundation.org/
GOLD Report Guidelines for COPD. [(accessed on 31 August 2024)]. Available online: https://goldcopd.org/2024-gold-report/
Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008;8:183–192. doi: 10.1038/nri2254. PubMed DOI
Chung K.F., Pavord I.D. Prevalence, pathogenesis, and causes of chronic cough. Lancet. 2008;371:1364–1374. doi: 10.1016/S0140-6736(08)60595-4. PubMed DOI
Polverino F., Sin D.D. Type 2 airway inflammation in COPD. Eur. Respir. J. 2024;63:2400150. doi: 10.1183/13993003.00150-2024. PubMed DOI
Singh D. Blood Eosinophil Counts in Chronic Obstructive Pulmonary Disease: A Biomarker of Inhaled Corticosteroid Effects. Tuberc. Respir. Dis. 2020;83:185–194. doi: 10.4046/trd.2020.0026. PubMed DOI PMC
Liu H., Xie Y., Huang Y., Luo K., Gu Y., Zhang H., Xu Y., Chen X. The association between blood eosinophils and clinical outcome of acute exacerbations of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respir. Med. 2024;222:107501. doi: 10.1016/j.rmed.2023.107501. PubMed DOI
Higham A., Beech A., Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: Inflammation, microbiome and clinical outcomes. J. Leuk. Biol. 2024;23:qiae153. doi: 10.1093/jleuko/qiae153. PubMed DOI
Global Strategy for Asthma Management and Prevention (GINA) [(accessed on 9 August 2024)]. Available online: www.ginasthma.org.
Hashmi M.F., Cataletto M.E. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2024. [(accessed on 3 May 2024)]. Asthma. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430901/
Justiz Vaillant A.A., Modi P., Jan A. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2024. [(accessed on 8 June 2024)]. Atopy. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542187/
Trivedi M., Denton E. Asthma in Children and Adults-What Are the Differences and What Can They Tell us About Asthma? Front. Pediatr. 2019;7:256. doi: 10.3389/fped.2019.00256. PubMed DOI PMC
Espuela-Ortiz A., Martin-Gonzalez E., Poza-Guedes P., González-Pérez R., Herrera-Luis E. Genomics of Treatable Traits in Asthma. Genes. 2023;14:1824. doi: 10.3390/genes14091824. PubMed DOI PMC
Herrera-Luis E., Martin-Almeida M., Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin. Chest Med. 2024;45:599–610. doi: 10.1016/j.ccm.2024.03.002. PubMed DOI PMC
Ishmael L., Casale T., Cardet J.C. Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. Biology. 2024;13:583. doi: 10.3390/biology13080583. PubMed DOI PMC
Leung A.K.C., Leung A.A.M., Wong A.H.C., Hon K.L. Human Ascariasis: An Updated Review. Recent. Pat. Inflamm. Allergy Drug Dis. 2020;14:133–145. doi: 10.2174/1872213X14666200705235757. PubMed DOI
Hon K.L., Leung A.K.C. An update on the current and emerging pharmacotherapy for the treatment of human ascariasis. Expert Opin. Pharmacother. 2024 doi: 10.1080/14656566.2024.2319686. accepted . PubMed DOI
Jõgi N.O., Kitaba N., Storaas T., Schlünssen V., Triebner K., Holloway J.W., Horsnell W.G.C., Svanes C., Bertelsen R.J. Ascaris exposure and its association with lung function, asthma, and DNA methylation in Northern Europe. J. Aller Clin. Immunol. 2022;149:1960–1969. doi: 10.1016/j.jaci.2021.11.013. PubMed DOI
O’Connell E.M., Nutman T.B. Eosinophilia in Infectious Diseases. Immunol. Allergy Clin. N. Am. 2015;35:493–522. doi: 10.1016/j.iac.2015.05.003. PubMed DOI PMC
Jackson D.J., Akuthota P., Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur. Respir. Rev. 2022;31:210150. doi: 10.1183/16000617.0150-2021. PubMed DOI PMC
Nóbrega C., Nascimento W., Lorena V., Medeiros D., Costa V., Albuquerque M., Barbosa C., Solé D., Sarinho E., Souza V. Cellular immune response of asthmatic children in the presence of anti-Ascaris antibody. Immunobiology. 2020;225:151978. doi: 10.1016/j.imbio.2020.151978. PubMed DOI
Buonfrate D., Bradbury R.S., Watts M.R., Bisoffi Z. Human strongyloidiasis: Complexities and pathways forward. Clin. Microbiol. Rev. 2023;36:e0003323. doi: 10.1128/cmr.00033-23. PubMed DOI PMC
Jacob L., Basu A., Paul D., Ray Y., Begam N.N., John C.V. Strongyloides stercoralis hyperinfection syndrome. Lancet Infect. Dis. 2024;24:e601. doi: 10.1016/S1473-3099(24)00417-1. PubMed DOI
Salam R., Sharaan A., Jackson S.M., Solis R.A., Zuberi J. Strongyloides Hyperinfection Syndrome: A Curious Case of Asthma Worsened by Systemic Corticosteroids. Am. J. Case Rep. 2020;21:e925221. doi: 10.12659/AJCR.925221. PubMed DOI PMC
Barkati S., Greenaway C., Libman M. Strongyloidiasis-related lung involvement: Too much of a bad thing. Curr. Opin. Infect. Dis. 2023;36:203–208. doi: 10.1097/QCO.0000000000000915. PubMed DOI
Alam A.M., Ozdemir C., Reza N. Strongyloides stercoralis infection in the UK: A systematic review and meta-analysis of published cases. Clin. Med. 2024;24:100227. doi: 10.1016/j.clinme.2024.100227. PubMed DOI PMC
Rostami A., Ma G., Wang T., Koehler A.V., Hofmann A., Chang B.C.H., Macpherson C.N., Gasser R.B. Human toxocariasis—A look at a neglected disease through an epidemiological ‘prism’. Infect. Genet. Evol. 2019;74:104002. doi: 10.1016/j.meegid.2019.104002. PubMed DOI
Auer H., Walochnik J. Toxocariasis and the clinical spectrum. Adv. Parasitol. 2020;109:111–130. doi: 10.1016/bs.apar.2020.01.005. PubMed DOI
Henke K., Ntovas S., Xourgia E., Exadaktylos A.K., Klukowska-Rötzler J., Ziaka M. Who Let the Dogs Out? Unmasking the Neglected: A Semi-Systematic Review on the Enduring Impact of Toxocariasis, a Prevalent Zoonotic Infection. Inter. J. Environ. Res. Public Health. 2023;20:6972. doi: 10.3390/ijerph20216972. PubMed DOI PMC
Pinelli E., Aranzamendi C. Toxocara infection and its association with allergic manifestations. Endocr. Metab. Immune Disord. Drug Targets. 2012;12:33–44. doi: 10.2174/187153012799278956. PubMed DOI
Ranasuriya G., Mian A., Boujaoude Z., Tsigrelis C. Pulmonary toxocariasis: A case report and literature review. Infection. 2014;42:575–578. doi: 10.1007/s15010-014-0587-3. PubMed DOI
Debnath S.K., Debnath M., Srivastava R. Opportunistic etiological agents causing lung infections: Emerging need to transform lung-targeted delivery. Heliyon. 2022;8:e12620. doi: 10.1016/j.heliyon.2022.e12620. PubMed DOI PMC
Lamberton P.H., Jourdan P.M. Human Ascariasis: Diagnostics Update. Curr. Trop. Med. Rep. 2015;2:189–200. doi: 10.1007/s40475-015-0064-9. PubMed DOI PMC
Tarafder M.R., Carabin H., Joseph L., Balolong E., Jr., Olveda R., McGarvey S.T. Estimating the sensitivity and specificity of Kato-Katz stool examination technique for detection of hookworms, Ascaris lumbricoides and Trichuris trichiura infections in humans in the absence of a ‘gold standard’. Int. J. Parasitol. 2010;40:399–404. doi: 10.1016/j.ijpara.2009.09.003. PubMed DOI PMC
Machicado J.D., Marcos L.A., Tello R., Canales M., Terashima A., Gotuzzo E. Diagnosis of soil-transmitted helminthiasis in an Amazonic community of Peru using multiple diagnostic techniques. Trans. R. Soc. Trop. Med. Hyg. 2012;106:333–339. doi: 10.1016/j.trstmh.2012.03.004. PubMed DOI
Mitchell J.R. Detection of Toxacara canis Antibodies With Fluorescent Antibody Technique. Proc. Soc. Exp. Biol. Med. 1964;117:267–270. doi: 10.3181/00379727-117-29554. PubMed DOI
Jacquier P., Gottstein B., Stingelin Y., Eckert J. Immunodiagnosis of toxocarosis in humans: Evaluation of a new enzyme-linked immunosorbent assay kit. J. Clin. Microbiol. 1991;29:1831–1835. doi: 10.1128/jcm.29.9.1831-1835.1991. PubMed DOI PMC
Del Pilar Fortes M., Gill G., Paredes M.E., Gamez L.E., Palacios M., Blanca I., Tassinari P. Allele and haplotype frequencies at human leukocyte antigen class I and II genes in Venezuela’s population. Ann. Biol. Clin. 2012;70:175–181. doi: 10.1684/abc.2012.0663. PubMed DOI
Schoos A.M. Atopic diseases-Diagnostics, mechanisms, and exposures. Pediatr. Allergy Immunol. 2024;35:e14198. doi: 10.1111/pai.14198. PubMed DOI
Lau S.K., Woo P.C., Wong S.S., Ma E.S., Yuen K.Y. Ascaris-induced eosinophilic pneumonitis in an HIV-infected patient. J. Clin. Pathol. 2007;60:202–203. doi: 10.1136/jcp.2006.037267. PubMed DOI PMC
Hanh N.T.L., Lee Y.L., Lin C.L., Chou C.M., Cheng P.C., Quang H.H., Fan C.K. Evidence for Asthma in the Lungs of Mice Inoculated with Different Doses of Toxocara canis. Am. J. Trop. Med. Hyg. 2020;103:2305–2314. doi: 10.4269/ajtmh.20-0484. PubMed DOI PMC
Vallentin B., Carsin A., Dubus J.C. Toxocariasis: An unusual cause of pleural effusion. Pediatr. Pulmonol. 2015;50:E35–E36. doi: 10.1002/ppul.23192. PubMed DOI
Bohnacker S., Troisi F., de Los Reyes Jiménez M., Esser-von Bieren J. What Can Parasites Tell Us About the Pathogenesis and Treatment of Asthma and Allergic Diseases. Front. Immunol. 2020;11:2106. doi: 10.3389/fimmu.2020.02106. PubMed DOI PMC
Caraballo L., Llinás-Caballero K. The Relationship of Parasite Allergens to Allergic Diseases. Curr. Allergy Asthma Rep. 2023;23:363–373. doi: 10.1007/s11882-023-01089-8. PubMed DOI PMC
Ahumada V., García E., Dennis R., Rojas M.X., Rondón M.A., Pérez A., Peñaranda A., Barragán A.M., Jimenez S., Kennedy M.W., et al. IgE responses to Ascaris and mite tropomyosins are risk factors for asthma. Clin. Exp. Allergy. 2015;45:1189–1200. doi: 10.1111/cea.12513. PubMed DOI
Matucci A., Vultaggio A., Maggi E., Kasujee I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir. Res. 2018;19:113. doi: 10.1186/s12931-018-0813-0. PubMed DOI PMC
Guida G., Bertolini F., Carriero V., Levra S., Sprio A.E., Sciolla M., Orpheu G., Arrigo E., Pizzimenti S., Ciprandi G., et al. Reliability of Total Serum IgE Levels to Define Type 2 High and Low Asthma Phenotypes. J. Clin. Med. 2023;12:5447. doi: 10.3390/jcm12175447. PubMed DOI PMC
Toychiev A., Gafner N., Belotserkovets V., Sekler D., Tashpulatova S., Osipova S. Impact of Ascaris lumbricoides infection on the development of chronic pulmonary aspergillosis in patients with COPD. Trop Doct. 2024;54:149–156. doi: 10.1177/00494755241226488. PubMed DOI
Ahmed N.J., Husen A.Z., Khoshnaw N., Getta H.A., Hussein Z.S., Yassin A.K., Jalal S.D., Mohammed R.N., Alwan A.F. The Effects of Smoking on IgE, Oxidative Stress and Haemoglobin Concentration. Asian Pac. J. Cancer Prev. 2020;21:1069–1072. doi: 10.31557/APJCP.2020.21.4.1069. PubMed DOI PMC
Maetani T., Tanabe N., Sato A., Shiraishi Y., Sakamoto R., Ogawa E., Sakai H., Matsumoto H., Sato S., Date H., et al. Association between blood eosinophil count and small airway eosinophils in smokers with and without COPD. ERJ Open Res. 2023;9:00235–02023. doi: 10.1183/23120541.00235-2023. PubMed DOI PMC
Tan L.D., Schaeffer B., Alismail A. Parasitic (Helminthic) Infection While on Asthma Biologic Treatment: Not Everything Is What It Seems. J. Asthma Allergy. 2019;12:415–420. doi: 10.2147/JAA.S223402. PubMed DOI PMC