Validating Ultra-Wideband Positioning System for Precision Cow Tracking in a Commercial Free-Stall Barn
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910242
Národní Agentura pro Zemědělský Výzkum
MZE-RO0723
Ministry of Agriculture
PubMed
39595359
PubMed Central
PMC11590918
DOI
10.3390/ani14223307
PII: ani14223307
Knihovny.cz E-zdroje
- Klíčová slova
- UWB, accuracy, dairy cow, indoor, positioning, precision, proximity,
- Publikační typ
- časopisecké články MeSH
UWB positioning systems offer innovative solutions for precision monitoring dairy cow behaviour and social dynamics, yet their performance in complex commercial barn environments requires thorough validation. This study evaluated the TrackLab 2.13 (Noldus) UWB system in a dairy barn housing 44-49 cows. We assessed stationary tag positioning using ten fixed tags over seven days, proximity detection between eight cows and ten stationary tags, and moving tag positioning using three tags on a stick to simulate cow movement. System performance varied by tag location, with reliability ranging from 4.09% to 96.73% and an overall mean accuracy of 0.126 ± 0.278 m for stationary tags. After the provider updated the software, only 0.62% of measures exceeded the declared accuracy of 0.30 m. Proximity detection between moving cows and stationary tags showed 81.42% accuracy within a 2-m range. While generally meeting specifications, spatial variations in accuracy and reliability were observed, particularly near barn perimeters. These findings highlight UWB technology's potential for precision livestock farming, welfare assessment, and behaviour research, including social interactions and space use patterns. Results emphasise the need for careful system setup, regular updates, and context-aware data interpretation in commercial settings to maximise benefits in animal welfare monitoring.
Zobrazit více v PubMed
Berckmans D. General introduction to precision livestock farming. Anim. Front. 2017;7:6–11. doi: 10.2527/af.2017.0102. DOI
Halachmi I., Guarino M., Bewley J., Pastell M. Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci. 2019;7:403–425. doi: 10.1146/annurev-animal-020518-114851. PubMed DOI
Porto S.M.C., Arcidiacono C., Anguzza U., Cascone G. A computer vision-based system for the automatic detection of lying behaviour of dairy cows in free-stall barns. Biosyst. Eng. 2013;115:184–194. doi: 10.1016/j.biosystemseng.2013.03.002. DOI
Ruiz-Garcia L., Lunadei L. The role of RFID in agriculture: Applications, limitations and challenges. Comput. Electron. Agric. 2011;79:42–50. doi: 10.1016/j.compag.2011.08.010. DOI
Gygax L., Neisen G., Bollhalder H. Accuracy and validation of a radar-based automatic local position measurement system for tracking dairy cows in free-stall barns. Comput. Electron. Agric. 2007;56:23–33. doi: 10.1016/j.compag.2006.12.004. DOI
Chen C., Zhu W., Norton T. Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning. Comput. Electron. Agric. 2021;187:106255. doi: 10.1016/j.compag.2021.106255. DOI
Huhtala A., Suhonen K., Mäkelä P., Hakojärvi M., Ahokas J. Evaluation of Instrumentation for Cow Positioning and Tracking Indoors. Biosyst. Eng. 2007;96:399–405. doi: 10.1016/j.biosystemseng.2006.11.013. DOI
Berckmans D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014;33:189–196. doi: 10.20506/rst.33.1.2273. PubMed DOI
Li N., Ren Z., Li D., Zeng L. Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: Towards the goal of precision livestock farming. Animal. 2020;14:617–625. doi: 10.1017/S1751731119002155. PubMed DOI
Vaintrub M.O., Levit H., Chincarini M., Fusaro I., Giammarco M., Vignola G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal. 2021;15:100143. doi: 10.1016/j.animal.2020.100143. PubMed DOI
Barker Z., Diosdado J.V., Codling E., Bell N., Hodges H., Croft D., Amory J. Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. J. Dairy Sci. 2018;101:6310–6321. doi: 10.3168/jds.2016-12172. PubMed DOI
Domaćinović M., Mijić P., Novoselec J., Domaćinović A., Solić D., Prakatur I. Advantages and Threats of Precise Monitoring and Management Technology Application on Dairy Farms. Poljoprivreda. 2023;29:70–77. doi: 10.18047/poljo.29.2.9. DOI
Rutten C.J., Velthuis A.G.J., Steeneveld W., Hogeveen H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013;96:1928–1952. doi: 10.3168/jds.2012-6107. PubMed DOI
Sharma B., Koundal D. Cattle health monitoring system using wireless sensor network: A survey from innovation perspective. IET Wirel. Sens. Syst. 2018;8:143–151. doi: 10.1049/iet-wss.2017.0060. DOI
Cyples J.A., Fitzpatrick C.E., Leslie K.E., DeVries T.J., Haley D.B., Chapinal N. Short communication: The effects of experimentally induced Escherichia coli clinical mastitis on lying behavior of dairy cows. J. Dairy Sci. 2012;95:2571–2575. doi: 10.3168/jds.2011-5135. PubMed DOI
Benaissa S., Tuyttens F., Plets D., Martens L., Vandaele L., Joseph W., Sonck B. Improved cattle behaviour monitoring by combining Ultra-Wideband location and accelerometer data. Animal. 2023;17:100730. doi: 10.1016/j.animal.2023.100730. PubMed DOI
Gygax L., Neisen G., Wechsler B. Differences between single and paired heifers in residency in functional areas, length of travel path, and area used throughout days 1–6 after integration into a free stall dairy herd. Appl. Anim. Behav. Sci. 2009;120:49–55. doi: 10.1016/j.applanim.2009.05.002. DOI
Chopra K., Hodges H.R., Barker Z.E., Diosdado J.A.V., Amory J.R., Cameron T.C., Croft D.P., Bell N.J., Codling E.A. Proximity Interactions in a Permanently Housed Dairy Herd: Network Structure, Consistency, and Individual Differences. Front. Veter. Sci. 2020;7:583715. doi: 10.3389/fvets.2020.583715. PubMed DOI PMC
Leso L., Ozella L., Camiciottoli S., Becciolini V., Barbari M. Validation of Proximity Sensors to Monitor Social Proximity in Dairy Cows: A Pilot Study. European Conference on Precision Livestock Farming. 2022. [(accessed on 7 November 2024)]. Available online: https://flore.unifi.it/handle/2158/1285955.
Pastell M., Frondelius L., Järvinen M., Backman J. Filtering methods to improve the accuracy of indoor positioning data for dairy cows. Biosyst. Eng. 2018;169:22–31. doi: 10.1016/j.biosystemseng.2018.01.008. DOI
Hofstra G., Roelofs J., Rutter S.M., van Erp-van der Kooij E., de Vlieg J. Mapping Welfare: Location Determining Techniques and Their Potential for Managing Cattle Welfare—A Review. Dairy. 2022;3:776–788. doi: 10.3390/dairy3040053. DOI
Jónsson R., Blanke M., Poulsen N.K., Caponetti F., Højsgaard S. Oestrus detection in dairy cows from activity and lying data using on-line individual models. Comput. Electron. Agric. 2011;76:6–15. doi: 10.1016/j.compag.2010.12.014. DOI
Alarifi A., Al-Salman A., Alsaleh M., Alnafessah A., Al-Hadhrami S., Al-Ammar M.A., Al-Khalifa H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors. 2016;16:707. doi: 10.3390/s16050707. PubMed DOI PMC
Hindermann P., Nüesch S., Früh D., Rüst A., Gygax L. High precision real-time location estimates in a real-life barn environment using a commercial ultra wideband chip. Comput. Electron. Agric. 2020;170:105250. doi: 10.1016/j.compag.2020.105250. DOI
Resch A., Pfeil R., Wegener M., Stelzer A. Review of the LPM local positioning measurement system; Proceedings of the 2012 International Conference on Localization and GNSS; Starnberg, Germany. 25–27 June 2012; pp. 1–5. DOI
Noldus Information Technology Behavior, Welfare, and Health Tracking|TrackLab. [(accessed on 7 November 2024)]. Available online: https://www.noldus.com/tracklab.
Melzer N., Foris B., Langbein J. Validation of a real-time location system for zone assignment and neighbor detection in dairy cow groups. Comput. Electron. Agric. 2021;187:106280. doi: 10.1016/j.compag.2021.106280. DOI
Zhuang S., Maselyne J., Van Nuffel A., Vangeyte J., Sonck B. Tracking group housed sows with an ultra-wideband indoor positioning system: A feasibility study. Biosyst. Eng. 2020;200:176–187. doi: 10.1016/j.biosystemseng.2020.09.011. DOI
Liu H., Darabi H., Banerjee P., Liu J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007;37:1067–1080. doi: 10.1109/TSMCC.2007.905750. DOI
Meunier B., Pradel P., Sloth K.H., Cirié C., Delval E., Mialon M.M., Veissier I. Image analysis to refine measurements of dairy cow behaviour from a real-time location system. Biosyst. Eng. 2018;173:32–44. doi: 10.1016/j.biosystemseng.2017.08.019. DOI
Ren K., Nielsen P.P., Alam M., Rönnegård L. Where do we find missing data in a commercial real-time location system? Evidence from 2 dairy farms. JDS Commun. 2021;2:345–350. doi: 10.3168/jdsc.2020-0064. PubMed DOI PMC
Oberschätzl R., Haidn B., Peis R., Kulpi F., Völkl C. Validation of Automatically Processed Position Data for Evaluation of the Behaviour of Dairy Cows. 2015. [(accessed on 7 November 2024)]. Available online: https://agris.fao.org/search/en/providers/122436/records/64747b592d3f560f80aea7bf.
Trénel P., Jensen M.B., Decker E.L., Skjøth F. Technical note: Quantifying and characterizing behavior in dairy calves using the IceTag automatic recording device. J. Dairy Sci. 2009;92:3397–3401. doi: 10.3168/jds.2009-2040. PubMed DOI
Porto S.M.C., Arcidiacono C., Giummarra A., Anguzza U., Cascone G. Localisation and identification performances of a real-time location system based on ultra wide band technology for monitoring and tracking dairy cow behaviour in a semi-open free-stall barn. Comput. Electron. Agric. 2014;108:221–229. doi: 10.1016/j.compag.2014.08.001. DOI
D’Urso P.R., Arcidiacono C., Pastell M., Cascone G. Assessment of a UWB Real Time Location System for Dairy Cows’ Monitoring. Sensors. 2023;23:4873. doi: 10.3390/s23104873. PubMed DOI PMC
Boyland N.K., Mlynski D.T., James R., Brent L.J.N., Croft D.P. The social network structure of a dynamic group of dairy cows: From individual to group level patterns. Appl. Anim. Behav. Sci. 2016;174:1–10. doi: 10.1016/j.applanim.2015.11.016. DOI
Ren K., Bernes G., Hetta M., Karlsson J. Tracking and analysing social interactions in dairy cattle with real-time locating system and machine learning. J. Syst. Archit. 2021;116:102139. doi: 10.1016/j.sysarc.2021.102139. DOI
Tullo E., Fontana I., Gottardo D., Sloth K.H., Guarino M. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity. J. Dairy Sci. 2016;99:7489–7494. doi: 10.3168/jds.2016-11014. PubMed DOI