Mutagenic impact and evolutionary influence of radiotherapy in hematologic malignancies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
K12 CA226330
NCI NIH HHS - United States
P30 CA240139
NCI NIH HHS - United States
PubMed
39605649
PubMed Central
PMC11601314
DOI
10.1101/2024.11.15.623836
PII: 2024.11.15.623836
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, Diffuse Large B-cell Lymphoma, Multiple Myeloma, Mutational Signatures, Radiation, Radiotherapy, Whole Genome Sequencing,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Ionizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole genome sequencing (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, it was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-resistant cell may seed systemic relapse.
Department of Radiation Oncology Moffitt Cancer Center Tampa FL USA
Lymphoma Service Moffitt Cancer Center Tampa FL USA
Lymphoma Service Sylvester Comprehensive Cancer Center Miami FL USA
Myeloma Institute Sylvester Comprehensive Cancer Center University of Miami Miami FL USA
Myeloma Research Program NYU Langone Perlmutter Cancer Center New York NY USA
Myeloma Service Memorial Sloan Kettering Cancer Center New York NY USA
Zobrazit více v PubMed
Talamo G, Dimaio C, Abbi KK, et al. Current role of radiation therapy for multiple myeloma. Frontiers in oncology. 2015;5:40. PubMed PMC
Thumallapally N, Meshref A, Mousa M, Terjanian T. Solitary plasmacytoma: population-based analysis of survival trends and effect of various treatment modalities in the USA. BMC cancer. 2017;17:1–11. PubMed PMC
Chang HH, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature reviews Molecular cell biology. 2017;18(8):495–506. PubMed PMC
Kocakavuk E, Anderson KJ, Varn FS, et al. Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nature genetics. 2021;53(7):1088–1096. PubMed PMC
Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N. The mutational footprints of cancer therapies. Nature genetics. 2019;51(12):1732–1740. PubMed PMC
Diamond B, Ziccheddu B, Maclachlan K, et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood, The Journal of the American Society of Hematology. 2023;141(19):2359–2371. PubMed PMC
Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101. PubMed PMC
Behjati S, Gundem G, Wedge DC, et al. Mutational signatures of ionizing radiation in second malignancies. Nature communications. 2016;7(1):1–8. PubMed PMC
Kucab JE, Zou X, Morganella S, et al. A compendium of mutational signatures of environmental agents. Cell. 2019;177(4):821–836.e816. PubMed PMC
Youk J, Kwon HW, Lim J, et al. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. Cell Genomics. 2024;4(2). PubMed PMC
Degasperi A, Zou X, Dias Amarante T, et al. Substitution mutational signatures in whole-genome–sequenced cancers in the UK population. Science. 2022;376(6591):abl9283. PubMed PMC
Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nature genetics. 2020;52(11):1219–1226. PubMed PMC
Bertrums EJ, Rosendahl Huber AK, de Kanter JK, et al. Elevated mutational age in blood of children treated for cancer contributes to therapy-related myeloid neoplasms. Cancer discovery. 2022;12(8):1860–1872. PubMed PMC
Jain MD, Ziccheddu B, Coughlin CA, et al. Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma. Blood, The Journal of the American Society of Hematology. 2022;140(5):491–503. PubMed PMC
Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nature communications. 2020;11(1):1917. PubMed PMC
Sánchez-Guixé M, Muiños F, Pinheiro-Santin M, et al. Origins of second malignancies in children and mutational footprint of chemotherapy in normal tissues. Cancer Discovery. 2024;14(6):953–964. PubMed PMC
Bertrums EJ, de Kanter JK, Derks LL, et al. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nature Communications. 2024;15(1):6025. PubMed PMC
de Kanter JK, Peci F, Bertrums E, et al. Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients. Cell stem cell. 2021;28(10):1726–1739.e1726. PubMed PMC
Van Hoeck A, Tjoonk NH, van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC cancer. 2019;19:1–14. PubMed PMC
Nguyen DD, Hooper WF, Liu W, et al. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature. 2024:1–10. PubMed PMC
Adewoye AB, Lindsay SJ, Dubrova YE, Hurles ME. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nature communications. 2015;6(1):6684. PubMed PMC
Meier B, Volkova NV, Wang B, et al. C. elegans genome-wide analysis reveals DNA repair pathways that act cooperatively to preserve genome integrity upon ionizing radiation. Plos one. 2021;16(10):e0258269. PubMed PMC
Boot A, Liu M, Stantial N, et al. Recurrent mutations in topoisomerase IIα cause a previously undescribed mutator phenotype in human cancers. Proceedings of the National Academy of Sciences. 2022;119(4):e2114024119. PubMed PMC
Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. PubMed PMC
Mai EK, Goldschmid H, Miah K, et al. Elotuzumab, lenalidomide, bortezomib, dexamethasone, and autologous haematopoietic stem-cell transplantation for newly diagnosed multiple myeloma (GMMG-HD6): results from a randomised, phase 3 trial. The Lancet Haematology 2024;11(2):e101–e113. PubMed
Cirrincione AM, Poos AM, Ziccheddu B, et al. The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma. Blood. 2024;144(7):771–783. PubMed PMC
Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–555. PubMed PMC
Edler M, Jakubowski N, Linscheid M. Quantitative determination of melphalan DNA adducts using hplc—inductively coupled mass spectrometry. Journal of mass spectrometry. 2006;41(4):507–516. PubMed
Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochemical pharmacology. 2003;66(2):225–237. PubMed
Sousa MM Zub KA, Aas PA, et al. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells. PLoS One. 2013;8(2):e55493. PubMed PMC
Ward J. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. International journal of radiation biology. 1990;57(6):1141–1150. PubMed
Sears CR, Turchi JJ. Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end-joining (NHEJ) independent of downstream damage response (DDR) pathways. Journal of Biological Chemistry. 2012;287(29):24263–24272. PubMed PMC
Maura F, Degasperi A, Nadeu F, et al. A practical guide for mutational signature analysis in hematological malignancies. Nature communications. 2019;10(1):2969. PubMed PMC
Islam SA, Díaz-Gay M, Wu Y, et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell genomics. 2022;2(11). PubMed PMC
Rustad EH, Nadeu F, Angelopoulos N, et al. mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies. Communications biology. 2021;4(1):1–12. PubMed PMC
Reijns MA, Parry DA, Williams TC, et al. Signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Nature. 2022;602(7898):623–631. PubMed PMC
Wang F, Liu J, Robbins D, et al. Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells. Apoptosis. 2011;16:301–310. PubMed PMC
Kuijk E, Jager M, van der Roest B, et al. The mutational impact of culturing human pluripotent and adult stem cells. Nature Communications. 2020;11(1):2493. PubMed PMC
Lee-Six H, Øbro NF, Shepherd MS, et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561(7724):473–478. PubMed PMC
Mitchell E, Spencer Chapman M, Williams N, et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606(7913):343–350. PubMed PMC
Huber AR, Pleguezuelos-Manzano C, Puschhof J, et al. Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer. Cancer Cell. 2024;42(3):487–496.e486. PubMed
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269–273. PubMed PMC
Diamond BT, Ziccheddu B, Maclachlan KH, et al. Tracking the Evolution of Therapy-Related Myeloid Neoplasms Using Chemotherapy Signatures. Blood Journal. 2023:blood. 2022018244. PubMed PMC
Landau HJ, Yellapantula V, Diamond BT, et al. Accelerated single cell seeding in relapsed multiple myeloma. Nature communications. 2020;11(1):3617. PubMed PMC
Alexandrov LB, Nik-Zainal S, Siu HC, Leung SY, Stratton MR. A mutational signature in gastric cancer suggests therapeutic strategies. Nature communications. 2015;6(1):8683. PubMed PMC
Rasche L, Schinke C, Maura F, et al. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nature Communications. 2022;13(1):4517. PubMed PMC
Pich O, Cortes-Bullich A, Muiños F, Pratcorona M, Gonzalez-Perez A, Lopez-Bigas N. The evolution of hematopoietic cells under cancer therapy. Nature communications. 2021;12(1):4803. PubMed PMC
Maura F, Kaddoura MA, Poos A, et al. Temporal Genomic Dynamics Shape Clinical Trajectory in Multiple Myeloma. bioRxiv. 2024:2024.2008. 2030.610457.
Maura F, Rajanna AR, Ziccheddu B, et al. Genomic classification and individualized prognosis in multiple myeloma. Journal of Clinical Oncology. 2024;42(11):1229–1240. PubMed PMC
Reisinger E, Genthner L, Kerssemakers J, et al. OTP: An automatized system for managing and processing NGS data. Journal of biotechnology. 2017;261:53–62. PubMed
Rimmer A, Phan H, Mathieson I, et al. Integrating mapping-, assembly-and haplotype-based approaches for calling variants in clinical sequencing applications. Nature genetics. 2014;46(8):912–918. PubMed PMC
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed PMC
Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171(5):1029–1041.e1021. PubMed PMC
Li Y, Roberts ND, Wala JA, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–121. PubMed PMC
Rustad EH, Yellapantula VD, Glodzik D, et al. Revealing the impact of structural variants in multiple myeloma. Blood cancer discovery. 2020;1(3):258–273. PubMed PMC
Maura F, Degasperi A, Nadeu F, et al. A practical guide for mutational signature analysis in hematological malignancies. Nat Commun. 2019;10(1):2969. PubMed PMC
Degasperi A, Amarante TD, Czarnecki J, et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nature cancer. 2020;1(2):249–263. PubMed PMC
Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101. PubMed PMC