Contrasting strategies in morphological and physiological response to drought stress among temperate forest understory forbs and graminoids
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-11487S
Grantová Agentura České Republiky
University PrF-2024-001
Univerzita Palackého v Olomouci
INTER-TRANSFER LTT20017
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 67985939
the Institute of Botany of the Czech Academy of Sciences
PubMed
39625012
DOI
10.1111/plb.13750
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass partitioning, SLA, WUE, chlorophyll fluorescence, minimum leaf conductance, photosynthesis, stomatal morphology, water deficit,
- Publikační typ
- časopisecké články MeSH
Drought stress can profoundly affect plant growth and physiological vitality, yet there is a notable scarcity of controlled drought experiments focused on herbaceous species of the forest understorey. In this study, we collected seeds from five forb and four graminoid species common in European temperate forests. Seeds were germinated under controlled glasshouse conditions and subjected to moderate drought stress for 5 weeks. We assessed biomass partitioning, stomatal and leaf morphology, leaf gas exchange, minimum leaf conductance (gmin), and chlorophyll fluorescence parameters. Comparison of the two ecological guilds revealed that graminoids had a higher R/S, improved WUE, greater carboxylation efficiency, and enhanced non-photochemical quenching under drought conditions compared to forbs. In contrast, forbs had significantly lower gmin, with higher total biomass and total leaf area. Despite these differences in morpho-physiological functional traits, both groups experienced a similar relative reduction in biomass after drought stress. Key predictors of biomass accumulation under drought included photochemical quenching, stomatal traits, total leaf area and gmin. A negative correlation between biomass and gmin suggests that plants with lower residual water loss after stomatal closure can accumulate more biomass under drought stress. Additionally, gmin was positively correlated with guard cell length, suggesting that larger stomata contribute to higher residual water loss. Contrasting strategies in morpho-physiological responses to drought define the differences between the two groups. In graminoids, drought resistance suggests greater emphasis on stress tolerance as a survival strategy. In contrast, forbs were able to maintain higher biomass and total leaf area, indicating a competitive strategy for maximizing resource acquisition.
Department of Botany Palacký University in Olomouc Olomouc Czech Republic
Department of Silviculture Mendel University in Brno Brno Czech Republic
Department of Vegetation Ecology Institute of Botany Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H.(T.), Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.H., Allard G., Running S.W., Semerci A., Cobb N. (2010) A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Alongi F., Petrík P., Ruehr N.K. (2024) Drought and heat stress interactions modify photorespiration and hydrogen peroxide content in silver fir. Tree Physiology, tpae126, 1–10.
Archaux F., Wolters V. (2006) Impact of summer drought on forest biodiversity: What do we know? Annals of Forest Science, 63, 645–652.
Aspelmeier S., Leuschner C. (2004) Genotypic variation in drought response of silver birch (Betula pendula): Leaf water status and carbon gain. Tree Physiology, 24, 517–528.
Attia Z., Domec J.C., Oren R., Way D.A., Moshelion M. (2015) Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany, 66, 4373–4381.
Bacher H., Sharaby Y., Walia H., Peleg Z. (2022) Modifying root‐to‐shoot ratio improves root water influxes in wheat under drought stress. Journal of Experimental Botany, 73, 1643–1654.
Bardgett R.D., Mommer L., De Vries F.T. (2014) Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692–699. https://doi.org/10.1016/j.tree.2014.10.006.
Bhusal N., Lee M., Lee H., Adhikari A., Han A.R., Han A., Kim H.S. (2021) Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Science of the Total Environment, 779, 146466.
Blackman C.J., Li X., Choat B., Rymer P.D., De Kauwe M.G., Duursma R.A., Tissue D.T., Medlyn B.E. (2019) Desiccation time during drought is highly predictable across species of eucalyptus from contrasting climates. New Phytologist, 224, 632–643.
Blumenthal D.M., Mueller K.E., Kray J.A., Ocheltree T.W., Augustine D.J., Wilcox K.R. (2020) Traits link drought resistance with herbivore defence and plant economics in semi‐arid grasslands: The central roles of phenology and leaf dry matter content (H. Cornelissen, ed.). Journal of Ecology, 108, 2336–2351.
Botequim B., Bugalho M.N., Rodrigues A.R., Marques S., Marto M., Borges J.G. (2021) Combining tree species composition and understory coverage indicators with optimization techniques to address concerns with landscape‐level biodiversity. Landscape, 10, 126.
Brodribb T.J., McAdam S.A.M., Jordan G.J., Martins S.C.V. (2014) Conifer species adapt to low‐rainfall climates by following one of two divergent pathways. Proceedings of the National Academy of Sciences, 111, 14489–14493.
Brodribb T.J., Powers J., Cochard H., Choat B. (2020) Hanging by a thread? Forests and drought. Science, 368, 261–266. https://doi.org/10.1126/science.aat7631
Canadell J., Jackson R.B., Ehleringer J.B., Mooney H.A., Sala O.E., Schulze E.D. (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583–595.
Cavard X., MacDonald S.E., Bergeron Y., Chen H.Y.H. (2011) Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environmental Reviews, 19, 142–161.
Chelli S., Simonetti E., Wellstein C., Campetella G., Carnicelli S., Andreetta A., Giorgini D., Puletti N., Bartha S., Canullo R. (2019) Effects of climate, soil, forest structure and land use on the functional composition of the understorey in Italian forests. Journal of Vegetation Science, 30, 1110–1121.
Chen M., Zhu X., Zhang Y., Du Z., Chen X., Kong X., Sun W., Chen C. (2020) Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Scientific Reports, 10, 6696.
Chudomelová M., Hédl R., Zouhar V., Szabó P. (2017) Open oakwoods facing modern threats: Will they survive the next fifty years? Biological Conservation, 210, 163–173.
Colom M.R., Vazzana C. (2003) Photosynthesis and PSII functionality of drought‐resistant and drought‐sensitive weeping lovegrass plants. Environmental and Experimental Botany, 49, 135–144.
Cook B.I., Mankin J.S., Anchukaitis K.J. (2018) Climate change and drought: From past to future. Current Climate Change Reports, 4, 164–179.
Deng J., Fang S., Fang X., Jin Y., Kuang Y., Lin F., Liu J., Ma J., Nie Y., Ouyang S., Ren J., Tie L., Tang S., Tan X., Wang X., Fan Z., Wang Q.‐W., Wang H., Liu C. (2023) Forest understory vegetation study: Current status and future trends. Forest Research, 3, 6.
Duursma R.A., Blackman C.J., Lopéz R., Martin‐StPaul N.K., Cochard H., Medlyn B.E. (2019) On the minimum leaf conductance: Its role in models of plant water use, and ecological and environmental controls. New Phytologist, 221, 693–705.
Felsmann K., Baudis M., Kayler Z.E., Puhlmann H., Ulrich A., Gessler A. (2018) Responses of the structure and function of the understory plant communities to precipitation reduction across forest ecosystems in Germany. Annals of Forest Science, 75, 3.
Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. (2008) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269–279.
Franks P.J., Beerling D.J. (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, 106, 10343–10347.
Gago J., Daloso D.M., Carriquí M., Nadal M., Morales M., Araújo W.L., Nunes‐Nesi A., Perera‐Castro A.V., Clemente‐Moreno M.J., Flexas J. (2020) The photosynthesis game is in the “inter‐play”: Mechanisms underlying CO2 diffusion in leaves. Environmental and Experimental Botany, 178, 104174.
Gebhardt T., Hesse B.D., Hikino K., Kolovrat K., Hafner B.D., Grams T.E.E., Häberle K.‐H. (2023) Repeated summer drought changes the radial xylem sap flow profile in mature Norway spruce but not in European beech. Agricultural and Forest Meteorology, 329, 109285.
Gibbs J.A., McAusland L., Robles‐Zazueta C.A., Murchie E.H., Burgess A.J. (2021) A deep learning method for fully automatic stomatal morphometry and maximal conductance estimation. Frontiers in Plant Science, 12, 780180.
Givnish T.J. (1978) Ecological aspects of plant morphology: Leaf form in relation to environment. Acta Biotheoretica, 27, 83–142.
Gleason S.M., Blackman C.J., Cook A.M., Laws C.A., Westoby M. (2014) Whole‐plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiology, 34, 275–284.
Głowacka K., Kromdijk J., Kucera K., Xie J., Cavanagh A.P., Leonelli L., Leakey A.D.B., Ort D.R., Niyogi K.K., Long S.P. (2018) Photosystem II subunit S overexpression increases the efficiency of water use in a field‐grown crop. Nature Communications, 9, 868.
Gobin R., Korboulewsky N., Dumas Y., Balandier P. (2015) Transpiration of four common understorey plant species according to drought intensity in temperate forests. Annals of Forest Science, 72, 1053–1064.
Griffin‐Nolan R.J., Fang S., Fang X., Jin Y., Kuang Y., Lin F., Liu J., Ma J., Nie Y., Ouyang S., Ren J., Tie L., Tang S., Tan X., Wang X., Fan Z., Wang Q.W., Wang H., Liu C. (2019) Trait selection and community‐weighted drought resistance in a north American grassland. Functional Ecology, 33, 1742–1751.
Grime J.P., Hunt R. (1975) Relative growth‐rate: Its range and adaptive significance in a local Flora. Journal of Ecology, 63, 393–422.
Harrison E.L., Arce Cubas L., Gray J.E., Hepworth C. (2020) The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101, 768–779.
Hédl R., Chudomelová M. (2020) Understanding the dynamics of forest understorey: Combination of monitoring and legacy data reveals patterns across temporal scales. Journal of Vegetation Science, 31, 733–743.
Heinken T., Diekmann M., Liira J., Orczewska A., Schmidt M., Brunet J., Chytrý M., Chabrerie O., Decocq G., De Frenne P., Dřevojan P., Dzwonko Z., Ewald J., Feilberg J., Jessen G.B., Grytnes J.‐A., Hermy M., Kriebitzsch W.‐U., Laiviņš M., Lenoir J., Lindmo S., Marage D., Marozas V., Niemeyer T., Paal J., Pyšek P., Roosaluste E., Sádlo J., Schaminée J.H.J., Tyler T., Verheyen K., Wulf M., Vanneste T. (2022) The European forest plant species list (EuForPlant): Concept and applications. Journal of Vegetation Science, 33, e13132.
Hommel R., Siegwolf R., Saurer M., Farquhar G.D., Kayler Z., Ferrio J.P., Gessler A. (2014) Drought response of mesophyll conductance in forest understory species—Impacts on water‐use efficiency and interactions with leaf water movement. Physiologia Plantarum, 152, 98–114.
Horike H., Kinoshita T., Kume A., Hanba Y.T. (2021) Responses of leaf photosynthetic traits, water use efficiency, and water relations in five urban shrub tree species under drought stress and recovery. Trees, 37, 53–67.
Iacopetti G., Bussotti F., Carrari E., Martini S., Selvi F. (2021) Understorey changes after an extreme drought event are modulated by overstorey tree species mixtures in thermophilous deciduous forests. Forest Ecology and Management, 484, 118931.
Jiang P., Yan J., Liu R., Zhang X., Fan S. (2023) Patterns of deep fine root and water utilization amongst trees, shrubs and herbs in subtropical pine plantations with seasonal droughts. Frontiers in Plant Science, 14, 1275464.
Johnson D., Vachon J., Britton A.J., Helliwell R.C. (2011) Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs. New Phytologist, 190, 740–749.
Kardiman R., Ræbild A. (2018) Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiology, 38, 696–705.
Kassambara A., Mundt F. (2020) Factoextra: Extract and visualize the results of multivariate data analyses R Package Version 1.0.7.
Khan A., Shen F., Yang L., Xing W., Clothier B. (2022) Limited acclimation in leaf morphology and anatomy to experimental drought in temperate Forest species. Biology, 11, 1186.
Koelemeijer I.A., Ehrlén J., Jönsson M., De Frenne P., Berg P., Andersson J., Weibull H., Hylander K. (2022) Interactive effects of drought and edge exposure on old‐growth forest understory species. Landscape Ecology, 37, 1839–1853.
Konôpková A., Kurjak D., Kmeť J., Klumpp R., Longauer R., Ditmarová Ľ., Gömöry D. (2018) Differences in photochemistry and response to heat stress between silver fir (Abies alba mill.) provenances. Trees, 32, 73–86.
Kopecký M., Hédl R., Szabó P. (2013) Non‐random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 50, 79–87.
Larcher W. (2003) Physiological plant ecology: Ecophysiology and stress physiology of functional groups, 4th edition. Springer, New York, USA, pp 513.
Lawson T., Vialet‐Chabrand S. (2018) Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221, 93–98. https://doi.org/10.1111/nph.15330
Le Provost G., Domergue F., Lalanne C., Ramos C.P., Grosbois A., Bert D., Meredieu C., Danjon F., Plomion C., Gion J.M. (2013) Soil water stress affects both cuticular wax content and cuticle‐related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC Plant Biology, 13, 95.
Link R.M. (2020) Corrmorant: Flexible correlation matrices based on ‘ggplot2’ R package version 0.0.0.9007.
Liu C., Sack L., Li Y., Zhang J., Yu K., Zhang Q., He N., Yu G. (2023) Relationships of stomatal morphology to the environment across plant communities. Nature Communications, 14, 6629.
Machado R., Loram‐Lourenço L., Farnese F.S., Alves R.D.F.B., de Sousa L.F., Silva F.G., Filho S.C.V., Torres‐Ruiz J.M., Cochard H., Menezes‐Silva P.E. (2021) Where do leaf water leaks come from? Trade‐offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytologist, 229, 1415–1430.
Maire V., Wright I.J., Prentice I.C., Batjes N.H., Bhaskar R., Van Bodegom P.M., Cornwell W.K., Ellsworth D., Niinemets Ü., Ordonez A., Reich P.B., Santiago L.S. (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24, 706–717.
Mantova M., Herbette S., Cochard H., Torres‐Ruiz J.M. (2022) Hydraulic failure and tree mortality: From correlation to causation. Trends in Plant Science, 27, 335–345. https://doi.org/10.1016/j.tplants.2021.10.003
Martin‐StPaul N., Delzon S., Cochard H. (2017) Plant resistance to drought depends on timely stomatal closure (H. Maherali, ed.). Ecology Letters, 20, 1437–1447.
McLachlan S.M., Bazely D.R. (2001) Recovery patterns of understory herbs and their use as indicators of deciduous Forest regeneration. Conservation Biology, 15, 98–110.
Mukarram M., Choudhary S., Kurjak D., Petek A., Khan M.M.A. (2021) Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 172, 1291–1300.
Murray M., Soh W.K., Yiotis C., Spicer R.A., Lawson T., McElwain J.C. (2020) Consistent relationship between field‐measured stomatal conductance and theoretical maximum stomatal conductance in C3 Woody angiosperms in four major biomes. International Journal of Plant Sciences, 181, 142–154.
Nippert J.B., Knapp A.K. (2007) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos, 116, 1017–1029.
Pereira T.S., Oliveira L.A., Andrade M.T., Haverroth E.J., Cardoso A.A., Martins S.C.V. (2024) Linking water‐use strategies with drought resistance across herbaceous crops. Physiologia Plantarum, 176, e14114.
Petek‐Petrik A., Petrík P., Lamarque L.J., Cochard H., Burlett R., Delzon S. (2023) Drought survival in conifer species is related to the time required to cross the stomatal safety margin. Journal of Experimental Botany, 74, 6847–6859.
Petrík P., Fleischer P., Tomes J., Pichler V., Fleischer P. (2024a) Post‐windthrow differences of carbon and water fluxes between managed and unmanaged Norway spruce stands. Agricultural and Forest Meteorology, 355, 110102.
Petrík P., Petek A., Konôpková A., Bosela M., Fleischer P., Frýdl J., Kurjak D. (2020) Stomatal and leaf morphology response of European beech (Fagus sylvatica L.) provenances transferred to contrasting climatic conditions. Forests, 11, 1359.
Petrík P., Petek‐Petrik A., Kurjak D., Mukarram M., Klein T., Gömöry D., Střelcová K., Frýdl J., Konôpková A. (2022) Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. Plant Biology, 24, 1287–1296.
Petrík P., Petek‐Petrík A., Lamarque L.J., Link R.M., Waite P.A., Ruehr N.K., Schuldt B., Maire V. (2024b) Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. Physiologia Plantarum, 176, e14619. https://doi.org/10.1101/2024.07.22.604523
Petrík P., Petek‐Petrik A., Mukarram M., Schuldt B., Lamarque L.J. (2023) Leaf physiological and morphological constraints of water‐use efficiency in C3 plants. AoB Plants, 15, plad047.
Pirasteh‐Anosheh H., Saed‐Moucheshi A., Pakniyat H., Pessarakli M. (2016) Stomatal responses to drought stress. In: Ahmad P. (Ed), Water stress and crop plants, 1st edition. Wiley, London, UK, pp 24–40.
Pokhrel Y., Felfelani F., Satoh Y., Boulange J., Burek P., Gädeke A., Gerten D., Gosling S.N., Grillakis M., Gudmundsson L., Hanasaki N., Kim H., Koutroulis A., Liu J., Papadimitriou L., Schewe J., Müller Schmied H., Stacke T., Telteu C.‐E., Thiery W., Veldkamp T., Zhao F., Wada Y. (2021) Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11, 226–233.
Pozner E., Bar‐On P., Livne‐Luzon S., Moran U., Tsamir‐Rimon M., Dener E., Schwartz E., Rotenberg E., Tatarinov F., Preisler Y., Zecharia N., Osem Y., Yakir D., Klein T. (2022) A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the edge of its distribution. Forest Ecology and Management, 506, 119966.
Reinelt L., Whitaker J., Kazakou E., Bonnal L., Bastianelli D., Bullock J.M., Ostle N.J. (2023) Drought effects on root and shoot traits and their decomposability. Functional Ecology, 37, 1044–1054.
Sage R.F., Monson R.K. (1999) C4 plant biology. Academic Press, New York.
Šantruček J., Šimáňová E., Karbulková J., Šimková M., Schreiber L. (2004) A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Journal of Experimental Botany, 55, 1411–1422.
Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., Hartmann H., Hiltbrunner E., Hoch G., Holloway‐Phillips M., Körner C., Larysch E., Lübbe T., Nelson D.B., Rammig A., Rigling A., Rose L., Ruehr N.K., Schumann K., Weiser F., Werner C., Wohlgemuth T., Zang C.S., Kahmen A. (2020) A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic and Applied Ecology, 45, 86–103.
Schuster A.‐C., Burghardt M., Riederer M. (2017) The ecophysiology of leaf cuticular transpiration: Are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany, 68, 5271–5279.
Simonetti J.A., Grez A.A., Estades C.F. (2013) Providing habitat for native mammals through understory enhancement in forestry plantations. Conservation Biology, 27, 1117–1121.
Slot M., Nardwattanawong T., Hernández G.G., Bueno A., Riederer M., Winter K. (2021) Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. New Phytologist, 232, 1618–1631.
Šmilauerová M., Šmilauer P. (2006) Co‐occurring graminoid and forb species do not differ in their root morphological response to soil heterogeneity. Folia Geobotanica, 41, 121–135.
Taylor S.H., Hulme S.P., Rees M., Ripley B.S., Ian Woodward F., Osborne C.P. (2010) Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytologist, 185, 780–791.
Tng D.Y.P., Apgaua D.M.G., Paz C.P., Dempsey R.W., Cernusak L.A., Liddell M.J., Laurance S.G.W. (2022) Drought reduces the growth and health of tropical rainforest understory plants. Forest Ecology and Management, 511, 120128.
Tobin M.F., Lopez O.R., Kursar T.A. (1999) Responses of tropical understory plants to a severe drought: Tolerance and avoidance of water stress 1. Biotropica, 31, 570–578.
Torun H., Cetin B., Stojnic S., Petrík P. (2024) Salicylic acid alleviates the effects of cadmium and drought stress by regulating water status, ions, and antioxidant defense in Pterocarya fraxinifolia. Frontiers in Plant Science, 14, 1339201.
Turc B., Sahay S., Haupt J., De Oliveira Santos T., Bai G., Glowacka K. (2024) Up‐regulation of non‐photochemical quenching improves water use efficiency and reduces whole‐plant water consumption under drought in Nicotiana tabacum. Journal of Experimental Botany, 75, 3959–3972.
Van Sundert K., Arfin Khan M.A.S., Bharath S., Buckley Y.M., Caldeira M.C., Donohue I., Dubbert M., Ebeling A., Eisenhauer N., Eskelinen A., Finn A., Gebauer T., Haider S., Hansart A., Jentsch A., Kübert A., Nijs I., Nock C.A., Nogueira C., Porath‐Krause A.J., Radujković D., Raynaud X., Risch A.C., Roscher C., Scherer‐Lorenzen M., Schuchardt M.A., Schütz M., Siebert J., Sitters J., Spohn M., Virtanen R., Werner C., Wilfahrt P., Vicca S. (2021) Fertilized graminoids intensify negative drought effects on grassland productivity. Global Change Biology, 27, 2441–2457.
Vastag E., Cocozza C., Orlović S., Kesić L., Kresoja M., Stojnić S. (2020) Half‐sib lines of pedunculate oak (Quercus robur L.) respond differently to drought through biometrical. Anatomical and Physiological Traits. Forests, 11, 153.
Waite P.A., Kumar M., Link R.M., Schuldt B. (2024) Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency. Tree Physiology, 44, tpae038.
Wang S., Hoch G., Grun G., Kahmen A. (2024) Water loss after stomatal closure: Quantifying leaf minimum conductance and minimal water use in nine temperate European tree species during a severe drought. Tree Physiology, 44, tpae027.
Wilson K.B., Baldocchi D.D., Hanson P.J. (2000) Quantifying stomatal and non‐stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiology, 20, 787–797.
Wilson P.J., Thompson K., Hodgson J.G. (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155–162.
Ye J., Yue C., Hu Y., Ma H. (2021) Spatial patterns of global‐scale forest root‐shoot ratio and their controlling factors. Science of the Total Environment, 800, 149251.
Zhang Z., Sun J. (2020) Root features determine the increasing proportion of forbs in response to degradation in alpine steppe, Tibetan plateau. Frontiers in Environmental Science, 8, 534774.
Zhong G., Tian Y., Liu P., Jia X., Zha T. (2022) Leaf traits and resource use efficiencies of 19 Woody Plant species in a plantation in Fangshan, Beijing, China. Forests, 14, 63.
Ziegler C., Cochard H., Stahl C., Foltzer L., Gérard B., Goret J.‐Y., Heuret P., Levionnois S., Maillard P., Bonal D., Coste S. (2024) Residual water losses mediate the trade‐off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany, 75, 4128–4147.
Zwicke M., Picon‐Cochard C., Morvan‐Bertrand A., Prud'homme M.A., Volaire F. (2015) What functional strategies drive drought survival and recovery of perennial species from upland grassland? Annals of Botany, 116, 1001–1015.