Magneto-plasmonic "switch" device for magnetic field detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39635032
PubMed Central
PMC11465990
DOI
10.1515/nanoph-2024-0136
PII: nanoph-2024-0136
Knihovny.cz E-zdroje
- Klíčová slova
- magnetic field sensors, magneto-optics, plasmonic,
- Publikační typ
- časopisecké články MeSH
This paper introduces a novel class of low-loss and cost-effective optical planar structures tailored for magnetic detection applications. These structures represent unconventional magneto-plasmonic devices specifically optimized for an 'optical switch' configuration. The structure consists of a 1D deep sinusoidal gold grating covered by a thin cobalt layer. In this unique arrangement, the excited plasmon induces a high-contrast switching phenomenon between the reflected free space intensity of specular (0th) and -1st diffracted orders, sensitive to any transverse magnetic fields applied to the cobalt layer. The use of these two distinct diffracted orders induces differential measurements, effectively mitigating common drift and perturbations. This innovative approach results in an enhanced detection sensitivity, showcasing the potential of these structures for advanced magnetic field sensing applications.
Zobrazit více v PubMed
Meneghello A., Sonato A., Ruffato G., Zacco G., Romanato F. A novel high sensitive surface plasmon resonance Legionella pneumophila sensing platform. Sens. Actuators, B . 2017;250:351–355. doi: 10.1016/j.snb.2017.04.177. DOI
Wong W. R., Fan H., Adikan F. R. M., Berini P. Multichannel long-range surface plasmon waveguides for parallel biosensing. J. Lightwave Technol. . 2018;36(23):5536–5546. doi: 10.1109/jlt.2018.2875953. DOI
Sadeghi Z., Shirkani H. Highly sensitive mid-infrared SPR biosensor for a wide range of biomolecules and biological cells based on graphene-gold grating. Phys. E . 2020;119:114005. doi: 10.1016/j.physe.2020.114005. DOI
Zhang C., Liu Z., Cai C., Yang Z., Qi Z.-M. Surface plasmon resonance gas sensor with a nanoporous gold film. Opt. Lett. . 2022;47(16):4155–4158. doi: 10.1364/ol.461408. DOI
Maier S. A. Excitation of surface plasmon Polaritons at planar interfaces. In: Maier S. A., editor. Plasmonics: Fundamentals and Applications . New York, NY, US: Springer; 2007. pp. 39–52.
Rizal C., Belotelov V., Ignatyeva D., Zvezdin A. K., Pisana S. Surface plasmon resonance (SPR) to magneto-optic SPR. Condens. Matter . 2019;4(2):50. doi: 10.3390/condmat4020050. DOI
Slavík R., Homola J., Brynda E. A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B. Biosens. Bioelectron. . 2002;17(6–7):591–595. doi: 10.1016/s0956-5663(02)00013-1. PubMed DOI
Kodoyianni V. Label-free analysis of biomolecular interactions using SPR imaging. BioTechniques . 2011;50(1):32–40. doi: 10.2144/000113569. PubMed DOI
Sepúlveda B., Calle A., Lechuga L. M., Armelles G. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. . 2006;31(8):1085–1087. doi: 10.1364/ol.31.001085. PubMed DOI
Zvezdin Kotov A. K. V. A. Modern Magnetooptics and Magnetooptical Materials . Boca Raton: CRC Press; 1997.
Bsawmaii L., Gamet E., Royer F., Neveu S., Jamon D. Longitudinal magneto-optical effect enhancement with high transmission through a 1D all-dielectric resonant guided mode grating. Opt. Express . 2020;28(6):8436–8444. doi: 10.1364/oe.385634. PubMed DOI
Bsawmaii L., Gamet E., Neveu S., Jamon D., Royer F. Magnetic nanocomposite films with photo-patterned 1D grating on top enable giant magneto-optical intensity effects. Opt. Mater. Express . 2022;12(2):513–523. doi: 10.1364/ome.447030. DOI
Belotelov V. I., et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. . 2011;6(6):370–376. doi: 10.1038/nnano.2011.54. PubMed DOI
Wu W., et al. Compact magnetic field sensor based on a magnetic-fluid-integrated fiber interferometer. IEEE Magn. Lett. . 2019;10:1–5. doi: 10.1109/lmag.2019.2915289. DOI
Dong J., et al. Design and analysis of surface plasmon resonance sensor based on multi-core photonic crystal fiber. Optik . 2022;266:169641. doi: 10.1016/j.ijleo.2022.169641. DOI
Liu Z., Wang Y., Zhang C. Magnetic field sensor based on magnetic optical surface plasmon resonance. Adv. Photonics Res. . 2023;4(10):2300098. doi: 10.1002/adpr.202300098. DOI
Tishchenko A., Parriaux O. Coupled-mode analysis of the low-loss plasmon-triggered switching between the 0 Th and -1 St orders of A metal grating. Photonics J. IEEE . 2015;7(4):1–9. doi: 10.1109/jphot.2015.2445766. DOI
Sauvage-Vincent J. Les modes de plasmon sur film métallique ondulé, appliqués aux documents de sécurité . Université Jean Monnet – Saint-Etienne; 2013. Theses.
Sauvage-Vincent J., Jourlin Y., Petiton V., Tishchenko A. V., Verrier I., Parriaux O. Low-loss plasmon-triggered switching between reflected free-space diffraction orders. Opt. Express . 2014;22(11):13314. doi: 10.1364/oe.22.013314. PubMed DOI
Popov L. T. E., Maystre D. Gratings—general properties of the Littrow mounting and energy flow distribution. J. Mod. Opt. . 1990;37(3):367–377. doi: 10.1080/09500349014550421. DOI
Laffont E., Crespo-Monteiro N., Valour A., Berini P., Jourlin Y. Differential sensing with replicated plasmonic gratings interrogated in the optical switch configuration. Sensors . 2023;23(3):1188. doi: 10.3390/s23031188. PubMed DOI PMC
Lyndin N. . 2013. https://mcgrating.com/ Mc Grating Software.
Jean C., Raoult G., Maystre D. A new theoretical method for diffraction gratings and its numerical application. J. Opt. . 1980;11(4):235–241. doi: 10.1088/0150-536x/11/4/005. DOI
Moharam M. G., Gaylord T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A . 1981;71(7):811–818. doi: 10.1364/josa.71.000811. DOI
Bruhier H., et al. Effect of roughness on surface plasmons propagation along deep and shallow metallic diffraction gratings. Opt. Lett. . 2022;47(2):349–352. doi: 10.1364/ol.443659. PubMed DOI
Yadagiri K., Wu T. The thickness of buffer layer and temperature dependent magneto dynamic properties of Ta/FeGaB/Ta tri-layer. J. Magn. Magn. Mater. . 2020;515:167277. doi: 10.1016/j.jmmm.2020.167277. DOI