Photon-assisted ultrafast electron-hole plasma expansion in direct band semiconductors
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39635605
PubMed Central
PMC11501353
DOI
10.1515/nanoph-2023-0815
PII: nanoph-2023-0815
Knihovny.cz E-zdroje
- Klíčová slova
- Rabi dynamics, coherent light–matter interaction, electron–hole plasma expansion, semiconductors, stimulated emission, terahertz spectroscopy,
- Publikační typ
- časopisecké články MeSH
Time-resolved terahertz spectroscopy is used to investigate formation and ultrafast long-distance propagation of electron-hole plasma in strongly photoexcited GaAs and InP. The observed phenomena involve fundamental interactions of electron-hole system with light, which manifest themselves in two different regimes: a coherent one with the plasma propagation speeds up to c/10 (in GaAs at 20 K) and an incoherent one reaching up to c/25 (in InP at 20 K), both over a macroscopic distance >100 μm. We explore a broad range of experimental conditions by investigating the two materials, by tuning their band gap with temperature and by controlling the interaction strength with the optical pump fluence. Our interpretation suggests that the observed phenomena should occur in most direct band semiconductors upon strong photoexcitation with low excess energy.
Zobrazit více v PubMed
Thornton T. J. Ballistic transport in GaAs quantum wires—a short history. Superlattices Microstruct. . 1998;23(3–4):601. doi: 10.1006/spmi.1997.0528. DOI
Romanek K. M., Nather H., Fischer J., Göbel E. O. Spatial expansion of the electron-hole plasma in GaAs. J. Lumin. . 1981;24–25(1):585. doi: 10.1016/0022-2313(81)90046-6. DOI
Cornet A., Pugnet M., Collet J., Amand T., Brousseau M. Spatial expansion of hot electron-hole plasma at high density in CdSe. J. Phys. Colloq. . 1981;42(C7):471. doi: 10.1051/jphyscol:1981757. DOI
Ziebold R., Witte T., Hübner M., Ulbrich R. G. Direct observation of Fermi-pressure-driven electron-hole plasma expansion in GaAs on a picosecond time scale. Phys. Rev. B . 2000;61(24):16610. doi: 10.1103/physrevb.61.16610. DOI
Tsen K. T., Morkoc H. Picosecond time-resolved Raman studies of the expansion of electron-hole plasma in GaAs-AlxGa1-xAs multiple quantum-well structures. Phys. Rev. B . 1986;34(8):6018. doi: 10.1103/physrevb.34.6018. PubMed DOI
Junnarkar M. R., Alfano R. R. Photogenerated high-density electron-hole plasma energy relaxation and experimental evidence for rapid expansion of the electron-hole plasma in CdSe. Phys. Rev. B . 1986;34(10):7045. doi: 10.1103/physrevb.34.7045. PubMed DOI
Fox E. C., van Driel H. M. Ultrafast carrier recombination and plasma expansion via stimulated emission in II–VI semiconductors. Phys. Rev. B . 1993;47(3):1663. doi: 10.1103/physrevb.47.1663. PubMed DOI
Blewett I. J., Gallaher N. R., Kar A. K., Wherrett B. S. Photon-recycling and optically driven plasma-expansion techniques applied to lifetime experiments on molecular-beam-epitaxy ZnSe. J. Opt. Soc. Am. B . 1996;13(5):779. doi: 10.1364/josab.13.000779. DOI
Troha T., Klimovič F., Ostatnický T., Kadlec F., Kužel P., Němec H. Ultrafast long-distance electron-hole plasma expansion in GaAs mediated by stimulated emission and reabsorption of photons. Phys. Rev. Lett. . 130(22):20230815. 2023, Art. no. 226301. PubMed
Kadlec F., Němec H., Kužel P. Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy. Phys. Rev. B . 70(12):20230815. 2004, Art. no. 125205.
Kohno N., Itakura R., Tsubouchi M. Relativistic Doppler reflection of terahertz light from a moving plasma front in an optically pumped Si wafer. Phys. Rev. B . 2020;102(23):235201.
Mittleman D. M., Hunsche S., Boivin L., Nuss M. C. T-ray tomography. Opt. Lett. . 1997;22(12):904. doi: 10.1364/ol.22.000904. PubMed DOI
Vurgaftman I., Meyer J. R., Ram-Mohan L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. . 2001;89(11):5815. doi: 10.1063/1.1368156. DOI
Aspnes D. E., Studna A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B . 1983;27(2):985. doi: 10.1103/physrevb.27.985. DOI
Östreich T., Knorr A. Various appearances of Rabi oscillations for 2π-pulse excitation in a semiconductor. Phys. Rev. B . 1993;48(24):17811. doi: 10.1103/physrevb.48.17811. PubMed DOI
Koch S. W., Knorr A., Binder R., Lindberg M. Microscopic theory of Rabi flopping, photon echo, and resonant pulse propagation in semiconductors. Phys. Status Solidi B . 1992;173(1):177. doi: 10.1002/pssb.2221730118. DOI
Joschko M., et al. Heavy-light hole quantum beats in the band-to-band continuum of GaAs observed in 20 femtosecond pump-probe experiments. Phys. Rev. Lett. . 1997;78(4):737. doi: 10.1103/physrevlett.78.737. DOI
Joschko M., et al. Excitonic and free-carrier quantum beats created by femtosecond excitation at the band edge of GaAs. Phys. Rev. B . 1998;58(16):10470. doi: 10.1103/physrevb.58.10470. DOI
Bányai L., Vu Q. T., Mieck B., Haug H. Ultrafast quantum kinetics of time-dependent RPA-screened Coulomb scattering. Phys. Rev. Lett. . 1998;81(4):882. doi: 10.1103/physrevlett.81.882. DOI
Allen L., Eberly J. H. Optical Resonance and Two-Level Atoms . New York: John Wiley and Sons; 1975.
McCall S. L., Hahn E. L. Self-induced transparency. Phys. Rev. . 1969;183(2):457. doi: 10.1103/physrev.183.457. DOI
Thomson M. D., Tzanova S. M., Roskos H. G. Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium. Phys. Rev. B . 2013;87(8):20230815. Art. no. 085203.
Huang L., Callan J. P., Glezer E. N., Mazur E. GaAs under intense ultrafast excitation: response of the dielectric function. Phys. Rev. Lett. . 1998;80(1):185. doi: 10.1103/physrevlett.80.185. DOI
Di Cicco A., et al. Broadband optical ultrafast reflectivity of Si, Ge and GaAs. Sci. Rep. . 2020;10(1):17363. doi: 10.1038/s41598-020-74068-y. PubMed DOI PMC
Vaněček M., Klier E. Intrinsic oscillatory photoconductivity and the band structure of ZnTe and CdTe. Phys. Status Solidi A . 1975;30(2):441.
Shokhovets S., Ambacher O., Gobsch G. Conduction-band dispersion relation and electron effective mass in III–V and II–VI zinc-blende semiconductors. Phys. Rev. B . 76(12):20230815. 2007, Art. no. 125203.
Valakh M. Y., Vitrikhovskii N. I., Lisitsa M. P. Electron effective mass in CdSxSe1-x crystals. Phys. Status Solidi . 1968;27(1):K81.
Tanimura H., et al. Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the Γ valley of GaAs. Phys. Rev. B . 2016;93(16):20230815. Art. no. 161203(R.
Tanimura H., Tanimura K., Kanasaki J. Ultrafast relaxation of photoinjected nonthermal electrons in the Γ valley of GaAs studied by time- and angle-resolved photoemission spectroscopy. Phys. Rev. B . 104(24):20230815. 2021, Art. no. 245201.
Tanimura K., Tanimura H., Kanasaki J. Ultrafast dynamics of photoinjected electrons at the nonthermal regime in the intra-Γ-valley relaxation in InP studied by time- and angle-resolved photoemission spectroscopy. Phys. Rev. B . 106(12):20230815. 2022, Art. no. 125204.
Bernardi M., Vigil-Fowler D., Ong C. S., Neaton J. B., Louie S. G. Ab initio study of hot electrons in GaAs. Proc. Natl. Acad. Sci. U. S. A. . 2015;112(17):5291. doi: 10.1073/pnas.1419446112. PubMed DOI PMC
Del Fatti N., Langot P., Tommasi R., Vallée F. Ultrafast hole–phonon interactions in GaAs. Appl. Phys. Lett. . 1997;71(1):75. doi: 10.1063/1.119472. DOI
Adachi S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y . J. Appl. Phys. . 1989;66(12):6030. doi: 10.1063/1.343580. DOI
Dapkus P. D., et al. Spontaneous and stimulated carrier lifetime (77 °K) in a high-purity, surface-free GaAs epitaxial layer. J. Appl. Phys. . 1970;41(10):4194. doi: 10.1063/1.1658435. DOI
Schenk A. Bandgap narrowing in zincblende III–V semiconductors: finite-temperature full random-phase approximation and general analytical model. AIP Adv. . 13(7):20230815. 2023, Art. no. 070702.