Generation of Ammonia in a Pulsed Hollow Cathode Discharge Operated in an Ar/H2/N2 Gas Mixture Detected by Fourier Transform Infrared
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39641128
PubMed Central
PMC11615948
DOI
10.1021/acssuschemeng.4c08054
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A hollow cathode discharge with a copper nickel cathode (Cu50Ni50) was operated in an Ar/H2/N2 gas mixture. Optical emission spectroscopy revealed the formation of NH radicals, which serve as precursors for NH3 formation. Ion mass spectrometry showed the formation of NH3 + and NH4 + ions indicating NH3 formation. Gas samples taken at the exhaust of the vacuum system were analyzed by Fourier transform infrared spectroscopy. Clear evidence for NH3 formation was obtained from these measurements.
Institut für Physik Universität Greifswald Felix Hausdorff Strasse 6 17489 Greifswald Germany
Institute of Physics Czech Academy of Sciences Na Slovance 2 18200 Prague Czech Republic
See more in PubMed
Hatzell M. C. The Colors of Ammonia. ACS Energy Lett. 2024, 9, 2920.10.1021/acsenergylett.4c01391. DOI
Tawalbeh M.; Murtaza S. Z. M.; Al-Othman A.; Alami A. H.; Singh K.; Olabi A. G. Ammonia: A versatile candidate for the use in energy storage systems. Renewable Energy 2022, 194, 955.10.1016/j.renene.2022.06.015. DOI
Duong P. A.; Ryu B. R.; Lee H.; Kang H. Thermodynamic analysis of integrated ammonia fuel cells system for maritime application. Energy Reports 2023, 10, 1521.10.1016/j.egyr.2023.08.028. DOI
Zhang L.; Jia C.; Bai F.; Wang W.; An S.; Zhao K.; Li Z.; Li J.; Sun H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization. Fuel 2024, 355, 129455.10.1016/j.fuel.2023.129455. DOI
Chen J. G.; Crooks R. M.; Seefeldt L. C.; Bren K. L.; Bullock R. M.; Darensbourg M. Y.; Holland P. L.; Hoffman B.; Janik M. J.; Jones A. K.; Kanatzidis M. G.; King P.; Lancaster K. M.; Lymar S. V.; Pfromm P.; Schneider W. F.; Schrock R. R. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, 873.10.1126/science.aar6611. PubMed DOI PMC
Smith J. R.; Mastorakos E. A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport. Maritime Transport Research 2023, 5, 100099.10.1016/j.martra.2023.100099. DOI
Dias V.; Pochet M.; Contino F.; Jeanmart H. Energy and Economic Costs of Chemical Storage. Front. Mech. Eng. 2020, 6, 21.10.3389/fmech.2020.00021. DOI
Lan R.; Irvine J. T. S.; Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482.10.1016/j.ijhydene.2011.10.004. DOI
Schlögl R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”?. Angew. Chem., Int. Ed. 2003, 42, 2004.10.1002/anie.200301553. PubMed DOI
Van Duc Long N.; Al-Bared M.; Lin L.; Davey K.; Tran N. N.; Pourali N.; Ken Ostrikov K.; Rebrov E.; Hessel V. Understanding plasma-assisted ammonia synthesis via crossing discipline borders of literature: A critical review. Chem. Eng. Sci. 2022, 263, 118097.10.1016/j.ces.2022.118097. DOI
Giddey S.; Badwal S. P. S.; Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576.10.1016/j.ijhydene.2013.09.054. DOI
Haber F. Über die Darstellung des Ammoniaks aus Stickstoff und Wasserstoff. Naturwissenschaften 1922, 10, 1041.10.1007/BF01565394. DOI
Haber F.; van Oordt G. Über die Bildung von Ammoniak den Elementen. Z. Anorg. Chem. 1905, 44, 341.10.1002/zaac.19050440122. DOI
Patil B. S.; Wang Q.; Hessel V.; Lang J. Plasma N2-fixation: 1900–2014. Catal. Today 2015, 256, 49.10.1016/j.cattod.2015.05.005. DOI
Han G.-F.; Li F.; Chen Z.-W.; Coppex C.; Kim S.-J.; Noh H.-J.; Fu Z.; Lu Y.; Singh C. V.; Siahrostami S.; Jiang Q.; Baek J.-B. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2021, 16, 325.10.1038/s41565-020-00809-9. PubMed DOI
Barboun P. M.; Hicks J. C. Unconventional Catalytic Approaches to Ammonia Synthesis. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 503.10.1146/annurev-chembioeng-092319-080240. PubMed DOI
Rouwenhorst K. H. R.; Mani S.; Lefferts L. Improving the Energy Yield of Plasma-Based Ammonia Synthesis with In Situ Adsorption. ACS Sus. Chem. Eng. 2022, 10, 1994.10.1021/acssuschemeng.1c08467. DOI
Rouwenhorst K. H. R.; Van der Ham A. G. J.; Lefferts L. Beyond Haber–Bosch: The renaissance of the Claude process. Int. J. Hydrogen Energy 2021, 46, 21566.10.1016/j.ijhydene.2021.04.014. DOI
All Nobel Prizes in Chemistry. NobelPrize.org. Nobel Prize Outreach. https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-chemistry.
Ammonia. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=7664-41-7 (retrieved 2023-10-17) (CAS RN: 7664-41-7).
Li Z.; Lu Y.; Li J.; Xu M.; Qi Y.; Park S.-W.; Kitano M.; Hosono H.; Chen J.-S.; Ye T.-N. Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis. Nat. Commun. 2023, 14, 6373.10.1038/s41467-023-42050-7. PubMed DOI PMC
Ammonia Technology Roadmap, Towards more sustainable nitrogen fertiliser production, International Energy Agency, www.iea.org, https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf.
Winter L. R.; Ashford B.; Hong J.; Murphy A. B.; Chen J. G. Identifying Surface Reaction Intermediates in Plasma Catalytic Ammonia Synthesis. ACS Catal. 2020, 10, 14763.10.1021/acscatal.0c03166. DOI
Hong J.; Prawer S.; Murphy A. B. Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustainable Chem. Eng. 2018, 6, 15.10.1021/acssuschemeng.7b02381. DOI
Hong J.; Pancheshnyi S.; Tam E.; Lowke J. J.; Prawer S.; Murphy A. B. Kinetic modelling of NH3 production in N2–H2 non-equilibrium atmospheric-pressure plasma catalysis. J. Phys. D: Appl. Phys. 2017, 50, 154005.10.1088/1361-6463/aa6229. DOI
Hong J.; Pancheshnyi S.; Tam E.; Lowke J. J.; Prawer S.; Murphy A. B. J. Phys. D: Appl. Phys. 2018, 51, 109501.10.1088/1361-6463/aaa988. DOI
Sharma R. K.; Patel H.; Mushtaq U.; Kyriakou V.; Zafeiropoulos G.; Peeters F.; Welzel S.; van de Sanden M. C. M.; Tsampas M. N. Plasma Activated Electrochemical Ammonia Synthesis from Nitrogen and Water. ACS Energy Letters 2021, 6, 313.10.1021/acsenergylett.0c02349. DOI
Pipa A. V.; Puth A.; Böcker J.; Jafarpour S. M.; Dalke A.; Biermann H.; Röpcke J.; van Helden J. H. Laser absorption spectroscopy for plasma-assisted thermochemical treatment. Part II.: Impact of the carbon and water contaminants on a low-pressure N2–H2 discharge. Plasma Sources Sci. Technol. 2023, 32, 085012.10.1088/1361-6595/ace9f8. DOI
Liu J.; Zhu X.; Hu X.; Zhang F.; Tu X. Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor: effect of argon addition. Vacuum 2022, 197, 110786.10.1016/j.vacuum.2021.110786. DOI
Mehta P.; Barboun P. M.; Engelmann Y.; Go D. B.; Bogaerts A.; Schneider W. F.; Hicks J. C. Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit. ACS Catal. 2020, 10, 6726.10.1021/acscatal.0c00684. DOI
Zhao Z.; Zhang M.; Wu Y.; Song W.; Yan J.; Qi X.; Yang J.; Wen J.; Zhang H. Ammonia Energy: Synthesis and Utilization. Ind. Eng. Chem. Res. 2024, 63, 8003.10.1021/acs.iecr.4c00384. DOI
Lieberman M. A., Lichtenberg A. J.. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons, Inc.: Hoboken, NJ, 2005. 10.1002/0471724254. DOI
Hippler R., Kersten H., Schmidt M., Schoenbach K. H., Eds. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd ed.; Wiley-VCH Verlag: Weinheim, Germany, 2008.
Veng V.; Tabu B.; Simasiku E.; Landis J.; Mack J. H.; Carreon M.; Trelles J. P. Design and Characterization of a Membrane Dielectric-Barrier Discharge Reactor for Ammonia Synthesis. Plas. Chem. Plas. Proc. 2023, 43, 1921.10.1007/s11090-023-10402-2. DOI
Xie H.; Liu N.; Zhang Q.; Zhong H.; Guo L.; Zhao X.; Li D.; Liu S.; Huang Z.; Lele A. D.; Brozena A. H.; Wang X.; Song K.; Chen S.; Yao Y.; Chi M.; Xiong W.; Rao J.; Zhao M.; Shneider M. N.; Luo J.; Zhao J.-C.; Ju Y.; Hu L. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 2023, 623, 964.10.1038/s41586-023-06694-1. PubMed DOI
Cha M. S.; Snoeckx R. Plasma Technology–Preparing for the Electrified Future, Front. Mech. Eng. 2022, 8, 903379.10.3389/fmech.2022.903379. DOI
Goebel D. M.; Becatti G.; Mikellides I. G.; Lopez Ortega A. Plasma hollow cathodes. J. Appl. Phys. 2021, 130, 050902.10.1063/5.0051228. DOI
Hagelaar G. J. M.; Mihailova D. B.; van Dijk J. Analytical model of a longitudinal hollow cathode discharge. J. Phys. D: Appl. Phys. 2010, 43, 465204.10.1088/0022-3727/43/46/465204. DOI
Kolobov V. I.; Tsendin L. D. Analytic model of the hollow cathode effect. Plasma Sources Sci. Technol. 1995, 4, 551.10.1088/0963-0252/4/4/006. DOI
Boeuf J. P.; Pitchford L. C. Field reversal in the negative glow of a DC glow discharge. J. Phys. D: Appl. Phys. 1995, 28, 2083.10.1088/0022-3727/28/10/013. DOI
Timmermans C. J.; Lunk A.; Schram D. C. The rotation of ions and neutrals in a cylindrical magnetized hollow cathode argon arc. Contrib. Plasma Phys. 1981, 21, 117.10.1002/ctpp.19810210206. DOI
Hubicka Z.Hollow cathodes and plasma jets for thin film deposition. In Low Temperature Plasmas; Hippler R., Kersten H., Schmidt M., Schoenbach K. H., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2008; Vol. 2, p 715.
Tichy M.; Hubicka Z.; Sicha M.; Cada M.; Olejnicek J.; Churpita O.; Jastrabik L.; Virostko P.; Adamek P.; Kudrna P.; Leshkov S.; Chichina M.; Kment S. Langmuir probe diagnostics of a plasma jet system. Plasma Sources Sci. Technol. 2009, 18, 014009.10.1088/0963-0252/18/1/014009. DOI
Peng P.; Cheng Y.; Hatzenbeller R.; Addy M.; Zhou N.; Schiappacasse C.; Chen D.; Zhang Y.; Anderson E.; Liu Y.; Chen P.; Ruan R. Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. Int. J. Hydrogen Energy 2017, 42, 19056.10.1016/j.ijhydene.2017.06.118. DOI
Peng P.; Chen P.; Addy M.; Cheng Y.; Anderson E.; Zhou N.; Schiappacasse C.; Zhang Y.; Chen D.; Hatzenbeller R.; Liu Y.; Ruan R. Atmospheric Plasma-Assisted Ammonia Synthesis Enhanced via Synergistic Catalytic Absorption. ACS Sustainable Chem. Eng. 2019, 7, 100.10.1021/acssuschemeng.8b03887. DOI
Wang Y.; Craven M.; Yu X.; Ding J.; Bryant P.; Huang J.; Tu X. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism. ACS Catal. 2019, 9, 10780.10.1021/acscatal.9b02538. PubMed DOI PMC
Kapran A.; Hippler R.; Wulff H.; Olejnicek J.; Pisarikova A.; Cada M.; Hubicka Z. Characteristics of a pulsed hollow cathode discharge operated in an Ar.O2 gas mixture and deposition of copper nickel oxide thin films. Vacuum 2023, 215, 112272.10.1016/j.vacuum.2023.112272. DOI
Hippler R.; Cada M.; Knizek A.; Ferus M.; Hubicka Z. A Pulsed Hollow Cathode Discharge Operated in an Ar/N2/O2 Gas Mixture and the Formation of Nitric Oxide. Plasma Chem. Plasma Process 2024, 44, 1053.10.1007/s11090-024-10450-2. DOI
Olejnicek J.; Smid J.; Perekrestov R.; Ksirova P.; Rathousky J.; Kohout M.; Dvorakova M.; Kment S.; Jurek K.; Cada M.; Hubicka Z. Co3O4 thin films prepared by hollow cathode discharge. Surf. Coat. Technol. 2019, 366, 303.10.1016/j.surfcoat.2019.03.010. DOI
Olejnicek J.; Smid J.; Cada M.; Ksirova P.; Kohout M.; Perekrestov R.; Tvarog D.; Kment S.; Kmentova H.; Hubicka Z. High rate deposition of photoactive TiO2 films by hot hollow cathode. Surf. Coat. Technol. 2020, 383, 125256.10.1016/j.surfcoat.2019.125256. DOI
Hippler R.; Cada M.; Hubicka Z. A positively biased external anode for energy control of plasma ions: hollow cathode and magnetron sputtering discharge. Plasma Sources Sci. Technol. 2021, 30, 045003.10.1088/1361-6595/abe0cc. DOI
Hippler R.; Cada M.; Stranak V.; Hubicka Z.; Helm C. A. Pressure dependence of Ar2+, ArTi+, and Ti2+ dimer formation in a magnetron sputtering discharge. J. Phys. D: Appl. Phys. 2017, 50, 445205.10.1088/1361-6463/aa8b9a. DOI
Hippler R.; Cada M.; Stranak V.; Helm C. A.; Hubicka Z. Pressure dependence of singly and doubly charged ion formation in a HiPIMS discharge. J. Appl. Phys. 2019, 125, 013301.10.1063/1.5055356. DOI
Hippler R.; Cada M.; Hubicka Z. Direct current and high power impulse magnetron sputtering discharges with a positively biased anode. J. Vac. Sci. Technol. A 2021, 39, 043007.10.1116/6.0001054. DOI
Hippler R.; Cada M.; Hubicka Z. Ion energy distribution of plasma ions of a hollow cathode discharge in Ar.N2 and Ar+O2 gas mixtures. Eur. Phys. J. D 2022, 76, 214.10.1140/epjd/s10053-022-00539-8. DOI
Kang S. J.; Donnelly V. M. Optical absorption and emission spectroscopy studies of ammonia-containing plasmas. Plasma Sources Sci. Technol. 2007, 16, 265.10.1088/0963-0252/16/2/008. DOI
Atomic Spectra Database, NIST Standard Reference Database 78 (retrieved October 11, 2023). 10.18434/T4W30F. DOI
Martinez H.; Yousif F. B. Electrical and optical characterization of pulsed plasma of N2-H2. Eur. Phys. J. D 2008, 46, 493.10.1140/epjd/e2008-00006-6. DOI
Mangina R. S.; Ajello J. M.; West R. A.; Dziczek D. High-resolution electron impact emission spectra and vibrational emission cross sections from 330–1100 nm for N2. ApJS 2011, 196, 13.10.1088/0067-0049/196/1/13. DOI
Fatima H.; Ullah M. U.; Ahmad S.; Imran M.; Sajjad S.; Hussain S.; Qayyum A. Qayyum, Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma. SN Appl. Sci. 2021, 3, 646.10.1007/s42452-021-04651-z. DOI
Qayyum A.; Zeb S.; Ali S.; Waheed A.; Zakaullah M. Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma. Plasma Chem. Plasma Process. 2005, 25, 551.10.1007/s11090-005-4999-9. DOI
Lago V.; Lebehot A.; Dudeck M.; Pellerin S.; Renault T.; Echegut P. Entry Conditions in Planetary Atmospheres: Emission Spectroscopy of Molecular Plasma Arcjets. Journal of Thermophysics and Heat Transfer 2001, 15, 168.10.2514/2.6605. DOI
Ndiaye A. A.; Lago V. Optical spectroscopy investigation of N2-CH4 plasma jets simulating Titan atmospheric entry conditions. Plasma Sources Sci. Technol. 2011, 20, 015015.10.1088/0963-0252/20/1/015015. DOI
Bazinette R.; Paillol J.; Massines F. Optical emission spectroscopy of glow, Townsend-like and radiofrequency DBDs in an Ar/NH3 mixture. Plasma Sources Sci. Technol. 2015, 24, 055021.10.1088/0963-0252/24/5/055021. DOI
Lin Z.; Abe S.; Chen Z.; Jaiswal S.; Koel B. E. Kinetic Modeling Analysis of Ar Addition to Atmospheric Pressure N2–H2 Plasma for Plasma-Assisted Catalytic Synthesis of NH3. J. Phys. Chem. A 2024, 128, 2427.10.1021/acs.jpca.3c06841. PubMed DOI
Liu J.; Zhu X.; Hu X.; Zhang F.; Tu X. Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor: effect of argon addition. Vacuum 2022, 197, 110786.10.1016/j.vacuum.2021.110786. DOI
Thejaswini H. C.; Peglow S.; Sushkov V.; Hippler R. Infrared Spectroscopy of CH4/N2 and C2Hm/N2 (m = 2, 4, 6) Gas Mixtures in a Dielectric Barrier Discharge. Plasma Chem. Plasma Process. 2014, 34, 1157.10.1007/s11090-014-9557-x. DOI
Navascues P.; Obrero-Perez J. M.; Cotrino J.; Gonzalez-Elipe A. R.; Gomez-Ramirez A. Unraveling Discharge and Surface Mechanisms in Plasma-Assisted Ammonia Reactions. ACS Sustainable Chem. Eng. 2020, 8, 14855.10.1021/acssuschemeng.0c04461. DOI
Caridade P. J. S. B.; Rodrigues S. P. J.; Sousa F.; Varandas A. J. C. J. Phys. Chem. A 2005, 109, 2356.10.1021/jp045102g. PubMed DOI
Müller M.; Piel F.; Gutmann R.; Sulzer P.; Hartungen E.; Wisthaler A. A novel method for producing NH4+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. Int. J. Mass Spectrom. 2020, 447, 116254.10.1016/j.ijms.2019.116254. DOI
Sode M.; Jacob W.; Schwarz-Selinger T.; Kersten H. Measurement and modeling of neutral, radical, and ion densities in H2–N2–Ar plasmas. J. Appl. Phys. 2015, 117, 083303.10.1063/1.4913623. DOI
Carrasco E.; Jimenez-Redondo M.; Tanarro I.; Herrero V. J. Neutral and ion chemistry in low pressure dc plasmas of H2/N2 mixtures: routes for the efficient production of NH3 and NH4+. Phys. Chem. Chem. Phys. 2011, 13, 19561.10.1039/c1cp22284h. PubMed DOI
Carrasco E.; Tanarro I.; Herrero V. J.; Cernicharo J. Proton transfer chains in cold plasmas of H2 with small amounts of N2. The prevalence of NH4+. Phys. Chem. Chem. Phys. 2013, 15, 1699.10.1039/C2CP43438E. PubMed DOI
Mao M.; Bogaerts A. Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures. J. Phys. D: Appl. Phys. 2010, 43, 205201.10.1088/0022-3727/43/20/205201. DOI
Steen M. L.; Kull K. R.; Fisher E. R. Fisher, Comparison of surface interactions for NH and on polymer and metal substrates during plasma processing. J. Appl. Phys. 2002, 92, 55.10.1063/1.1486038. DOI
Pulsipher D. J. V.; Fisher E. R. NH2 and NH Surface Production in Pulsed NH3 Plasmas on TiO2: A Steady-State Probe of Short Pulse Plasmas. Plasma Process. Polym. 2013, 10, 6.10.1002/ppap.201200060. DOI
Patil B. S.; Cherkasov N.; Srinath N. V.; Lang J.; Ibhadon A. O.; Wang Q.; Hessel V. The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis. Catal. Today 2021, 362, 2.10.1016/j.cattod.2020.06.074. DOI
Zhou Y.; Peng X.; Zhang T.; Cai H.; Lin B.; Zheng L.; Wang X.; Jiang L. Essential Role of Ru-Anion Interaction in Ru-Based Ammonia Synthesis Catalysts. ACS Catal. 2022, 12, 7633.10.1021/acscatal.2c01486. DOI
Mehta P.; Barboun P.; Go D. B.; Hicks J. C.; Schneider W. F. Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. ACS Energy Letters 2019, 4, 1115.10.1021/acsenergylett.9b00263. DOI
Iwamoto M.; Akiyama M.; Aihara K.; Deguchi T. Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catal. 2017, 7, 6924.10.1021/acscatal.7b01624. DOI