• This record comes from PubMed

Generation of Ammonia in a Pulsed Hollow Cathode Discharge Operated in an Ar/H2/N2 Gas Mixture Detected by Fourier Transform Infrared

. 2024 Dec 02 ; 12 (48) : 17443-17449. [epub] 20241115

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

A hollow cathode discharge with a copper nickel cathode (Cu50Ni50) was operated in an Ar/H2/N2 gas mixture. Optical emission spectroscopy revealed the formation of NH radicals, which serve as precursors for NH3 formation. Ion mass spectrometry showed the formation of NH3 + and NH4 + ions indicating NH3 formation. Gas samples taken at the exhaust of the vacuum system were analyzed by Fourier transform infrared spectroscopy. Clear evidence for NH3 formation was obtained from these measurements.

See more in PubMed

Hatzell M. C. The Colors of Ammonia. ACS Energy Lett. 2024, 9, 2920.10.1021/acsenergylett.4c01391. DOI

Tawalbeh M.; Murtaza S. Z. M.; Al-Othman A.; Alami A. H.; Singh K.; Olabi A. G. Ammonia: A versatile candidate for the use in energy storage systems. Renewable Energy 2022, 194, 955.10.1016/j.renene.2022.06.015. DOI

Duong P. A.; Ryu B. R.; Lee H.; Kang H. Thermodynamic analysis of integrated ammonia fuel cells system for maritime application. Energy Reports 2023, 10, 1521.10.1016/j.egyr.2023.08.028. DOI

Zhang L.; Jia C.; Bai F.; Wang W.; An S.; Zhao K.; Li Z.; Li J.; Sun H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization. Fuel 2024, 355, 129455.10.1016/j.fuel.2023.129455. DOI

Chen J. G.; Crooks R. M.; Seefeldt L. C.; Bren K. L.; Bullock R. M.; Darensbourg M. Y.; Holland P. L.; Hoffman B.; Janik M. J.; Jones A. K.; Kanatzidis M. G.; King P.; Lancaster K. M.; Lymar S. V.; Pfromm P.; Schneider W. F.; Schrock R. R. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, 873.10.1126/science.aar6611. PubMed DOI PMC

Smith J. R.; Mastorakos E. A Systems-Level Study of Ammonia and Hydrogen for Maritime Transport. Maritime Transport Research 2023, 5, 100099.10.1016/j.martra.2023.100099. DOI

Dias V.; Pochet M.; Contino F.; Jeanmart H. Energy and Economic Costs of Chemical Storage. Front. Mech. Eng. 2020, 6, 21.10.3389/fmech.2020.00021. DOI

Lan R.; Irvine J. T. S.; Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 2012, 37, 1482.10.1016/j.ijhydene.2011.10.004. DOI

Schlögl R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”?. Angew. Chem., Int. Ed. 2003, 42, 2004.10.1002/anie.200301553. PubMed DOI

Van Duc Long N.; Al-Bared M.; Lin L.; Davey K.; Tran N. N.; Pourali N.; Ken Ostrikov K.; Rebrov E.; Hessel V. Understanding plasma-assisted ammonia synthesis via crossing discipline borders of literature: A critical review. Chem. Eng. Sci. 2022, 263, 118097.10.1016/j.ces.2022.118097. DOI

Giddey S.; Badwal S. P. S.; Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576.10.1016/j.ijhydene.2013.09.054. DOI

Haber F. Über die Darstellung des Ammoniaks aus Stickstoff und Wasserstoff. Naturwissenschaften 1922, 10, 1041.10.1007/BF01565394. DOI

Haber F.; van Oordt G. Über die Bildung von Ammoniak den Elementen. Z. Anorg. Chem. 1905, 44, 341.10.1002/zaac.19050440122. DOI

Patil B. S.; Wang Q.; Hessel V.; Lang J. Plasma N2-fixation: 1900–2014. Catal. Today 2015, 256, 49.10.1016/j.cattod.2015.05.005. DOI

Han G.-F.; Li F.; Chen Z.-W.; Coppex C.; Kim S.-J.; Noh H.-J.; Fu Z.; Lu Y.; Singh C. V.; Siahrostami S.; Jiang Q.; Baek J.-B. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2021, 16, 325.10.1038/s41565-020-00809-9. PubMed DOI

Barboun P. M.; Hicks J. C. Unconventional Catalytic Approaches to Ammonia Synthesis. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 503.10.1146/annurev-chembioeng-092319-080240. PubMed DOI

Rouwenhorst K. H. R.; Mani S.; Lefferts L. Improving the Energy Yield of Plasma-Based Ammonia Synthesis with In Situ Adsorption. ACS Sus. Chem. Eng. 2022, 10, 1994.10.1021/acssuschemeng.1c08467. DOI

Rouwenhorst K. H. R.; Van der Ham A. G. J.; Lefferts L. Beyond Haber–Bosch: The renaissance of the Claude process. Int. J. Hydrogen Energy 2021, 46, 21566.10.1016/j.ijhydene.2021.04.014. DOI

All Nobel Prizes in Chemistry. NobelPrize.org. Nobel Prize Outreach. https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-chemistry.

Ammonia. CAS Common Chemistry. https://commonchemistry.cas.org/detail?cas_rn=7664-41-7 (retrieved 2023-10-17) (CAS RN: 7664-41-7).

Li Z.; Lu Y.; Li J.; Xu M.; Qi Y.; Park S.-W.; Kitano M.; Hosono H.; Chen J.-S.; Ye T.-N. Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis. Nat. Commun. 2023, 14, 6373.10.1038/s41467-023-42050-7. PubMed DOI PMC

Ammonia Technology Roadmap, Towards more sustainable nitrogen fertiliser production, International Energy Agency, www.iea.org, https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf.

Winter L. R.; Ashford B.; Hong J.; Murphy A. B.; Chen J. G. Identifying Surface Reaction Intermediates in Plasma Catalytic Ammonia Synthesis. ACS Catal. 2020, 10, 14763.10.1021/acscatal.0c03166. DOI

Hong J.; Prawer S.; Murphy A. B. Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustainable Chem. Eng. 2018, 6, 15.10.1021/acssuschemeng.7b02381. DOI

Hong J.; Pancheshnyi S.; Tam E.; Lowke J. J.; Prawer S.; Murphy A. B. Kinetic modelling of NH3 production in N2–H2 non-equilibrium atmospheric-pressure plasma catalysis. J. Phys. D: Appl. Phys. 2017, 50, 154005.10.1088/1361-6463/aa6229. DOI

Hong J.; Pancheshnyi S.; Tam E.; Lowke J. J.; Prawer S.; Murphy A. B. J. Phys. D: Appl. Phys. 2018, 51, 109501.10.1088/1361-6463/aaa988. DOI

Sharma R. K.; Patel H.; Mushtaq U.; Kyriakou V.; Zafeiropoulos G.; Peeters F.; Welzel S.; van de Sanden M. C. M.; Tsampas M. N. Plasma Activated Electrochemical Ammonia Synthesis from Nitrogen and Water. ACS Energy Letters 2021, 6, 313.10.1021/acsenergylett.0c02349. DOI

Pipa A. V.; Puth A.; Böcker J.; Jafarpour S. M.; Dalke A.; Biermann H.; Röpcke J.; van Helden J. H. Laser absorption spectroscopy for plasma-assisted thermochemical treatment. Part II.: Impact of the carbon and water contaminants on a low-pressure N2–H2 discharge. Plasma Sources Sci. Technol. 2023, 32, 085012.10.1088/1361-6595/ace9f8. DOI

Liu J.; Zhu X.; Hu X.; Zhang F.; Tu X. Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor: effect of argon addition. Vacuum 2022, 197, 110786.10.1016/j.vacuum.2021.110786. DOI

Mehta P.; Barboun P. M.; Engelmann Y.; Go D. B.; Bogaerts A.; Schneider W. F.; Hicks J. C. Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit. ACS Catal. 2020, 10, 6726.10.1021/acscatal.0c00684. DOI

Zhao Z.; Zhang M.; Wu Y.; Song W.; Yan J.; Qi X.; Yang J.; Wen J.; Zhang H. Ammonia Energy: Synthesis and Utilization. Ind. Eng. Chem. Res. 2024, 63, 8003.10.1021/acs.iecr.4c00384. DOI

Lieberman M. A., Lichtenberg A. J.. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons, Inc.: Hoboken, NJ, 2005. 10.1002/0471724254. DOI

Hippler R., Kersten H., Schmidt M., Schoenbach K. H., Eds. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2nd ed.; Wiley-VCH Verlag: Weinheim, Germany, 2008.

Veng V.; Tabu B.; Simasiku E.; Landis J.; Mack J. H.; Carreon M.; Trelles J. P. Design and Characterization of a Membrane Dielectric-Barrier Discharge Reactor for Ammonia Synthesis. Plas. Chem. Plas. Proc. 2023, 43, 1921.10.1007/s11090-023-10402-2. DOI

Xie H.; Liu N.; Zhang Q.; Zhong H.; Guo L.; Zhao X.; Li D.; Liu S.; Huang Z.; Lele A. D.; Brozena A. H.; Wang X.; Song K.; Chen S.; Yao Y.; Chi M.; Xiong W.; Rao J.; Zhao M.; Shneider M. N.; Luo J.; Zhao J.-C.; Ju Y.; Hu L. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 2023, 623, 964.10.1038/s41586-023-06694-1. PubMed DOI

Cha M. S.; Snoeckx R. Plasma Technology–Preparing for the Electrified Future, Front. Mech. Eng. 2022, 8, 903379.10.3389/fmech.2022.903379. DOI

Goebel D. M.; Becatti G.; Mikellides I. G.; Lopez Ortega A. Plasma hollow cathodes. J. Appl. Phys. 2021, 130, 050902.10.1063/5.0051228. DOI

Hagelaar G. J. M.; Mihailova D. B.; van Dijk J. Analytical model of a longitudinal hollow cathode discharge. J. Phys. D: Appl. Phys. 2010, 43, 465204.10.1088/0022-3727/43/46/465204. DOI

Kolobov V. I.; Tsendin L. D. Analytic model of the hollow cathode effect. Plasma Sources Sci. Technol. 1995, 4, 551.10.1088/0963-0252/4/4/006. DOI

Boeuf J. P.; Pitchford L. C. Field reversal in the negative glow of a DC glow discharge. J. Phys. D: Appl. Phys. 1995, 28, 2083.10.1088/0022-3727/28/10/013. DOI

Timmermans C. J.; Lunk A.; Schram D. C. The rotation of ions and neutrals in a cylindrical magnetized hollow cathode argon arc. Contrib. Plasma Phys. 1981, 21, 117.10.1002/ctpp.19810210206. DOI

Hubicka Z.Hollow cathodes and plasma jets for thin film deposition. In Low Temperature Plasmas; Hippler R., Kersten H., Schmidt M., Schoenbach K. H., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2008; Vol. 2, p 715.

Tichy M.; Hubicka Z.; Sicha M.; Cada M.; Olejnicek J.; Churpita O.; Jastrabik L.; Virostko P.; Adamek P.; Kudrna P.; Leshkov S.; Chichina M.; Kment S. Langmuir probe diagnostics of a plasma jet system. Plasma Sources Sci. Technol. 2009, 18, 014009.10.1088/0963-0252/18/1/014009. DOI

Peng P.; Cheng Y.; Hatzenbeller R.; Addy M.; Zhou N.; Schiappacasse C.; Chen D.; Zhang Y.; Anderson E.; Liu Y.; Chen P.; Ruan R. Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. Int. J. Hydrogen Energy 2017, 42, 19056.10.1016/j.ijhydene.2017.06.118. DOI

Peng P.; Chen P.; Addy M.; Cheng Y.; Anderson E.; Zhou N.; Schiappacasse C.; Zhang Y.; Chen D.; Hatzenbeller R.; Liu Y.; Ruan R. Atmospheric Plasma-Assisted Ammonia Synthesis Enhanced via Synergistic Catalytic Absorption. ACS Sustainable Chem. Eng. 2019, 7, 100.10.1021/acssuschemeng.8b03887. DOI

Wang Y.; Craven M.; Yu X.; Ding J.; Bryant P.; Huang J.; Tu X. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al2O3 Catalyst at Near-Room Temperature: Insights into the Importance of the Catalyst Surface on the Reaction Mechanism. ACS Catal. 2019, 9, 10780.10.1021/acscatal.9b02538. PubMed DOI PMC

Kapran A.; Hippler R.; Wulff H.; Olejnicek J.; Pisarikova A.; Cada M.; Hubicka Z. Characteristics of a pulsed hollow cathode discharge operated in an Ar.O2 gas mixture and deposition of copper nickel oxide thin films. Vacuum 2023, 215, 112272.10.1016/j.vacuum.2023.112272. DOI

Hippler R.; Cada M.; Knizek A.; Ferus M.; Hubicka Z. A Pulsed Hollow Cathode Discharge Operated in an Ar/N2/O2 Gas Mixture and the Formation of Nitric Oxide. Plasma Chem. Plasma Process 2024, 44, 1053.10.1007/s11090-024-10450-2. DOI

Olejnicek J.; Smid J.; Perekrestov R.; Ksirova P.; Rathousky J.; Kohout M.; Dvorakova M.; Kment S.; Jurek K.; Cada M.; Hubicka Z. Co3O4 thin films prepared by hollow cathode discharge. Surf. Coat. Technol. 2019, 366, 303.10.1016/j.surfcoat.2019.03.010. DOI

Olejnicek J.; Smid J.; Cada M.; Ksirova P.; Kohout M.; Perekrestov R.; Tvarog D.; Kment S.; Kmentova H.; Hubicka Z. High rate deposition of photoactive TiO2 films by hot hollow cathode. Surf. Coat. Technol. 2020, 383, 125256.10.1016/j.surfcoat.2019.125256. DOI

Hippler R.; Cada M.; Hubicka Z. A positively biased external anode for energy control of plasma ions: hollow cathode and magnetron sputtering discharge. Plasma Sources Sci. Technol. 2021, 30, 045003.10.1088/1361-6595/abe0cc. DOI

Hippler R.; Cada M.; Stranak V.; Hubicka Z.; Helm C. A. Pressure dependence of Ar2+, ArTi+, and Ti2+ dimer formation in a magnetron sputtering discharge. J. Phys. D: Appl. Phys. 2017, 50, 445205.10.1088/1361-6463/aa8b9a. DOI

Hippler R.; Cada M.; Stranak V.; Helm C. A.; Hubicka Z. Pressure dependence of singly and doubly charged ion formation in a HiPIMS discharge. J. Appl. Phys. 2019, 125, 013301.10.1063/1.5055356. DOI

Hippler R.; Cada M.; Hubicka Z. Direct current and high power impulse magnetron sputtering discharges with a positively biased anode. J. Vac. Sci. Technol. A 2021, 39, 043007.10.1116/6.0001054. DOI

Hippler R.; Cada M.; Hubicka Z. Ion energy distribution of plasma ions of a hollow cathode discharge in Ar.N2 and Ar+O2 gas mixtures. Eur. Phys. J. D 2022, 76, 214.10.1140/epjd/s10053-022-00539-8. DOI

Kang S. J.; Donnelly V. M. Optical absorption and emission spectroscopy studies of ammonia-containing plasmas. Plasma Sources Sci. Technol. 2007, 16, 265.10.1088/0963-0252/16/2/008. DOI

Atomic Spectra Database, NIST Standard Reference Database 78 (retrieved October 11, 2023). 10.18434/T4W30F. DOI

Martinez H.; Yousif F. B. Electrical and optical characterization of pulsed plasma of N2-H2. Eur. Phys. J. D 2008, 46, 493.10.1140/epjd/e2008-00006-6. DOI

Mangina R. S.; Ajello J. M.; West R. A.; Dziczek D. High-resolution electron impact emission spectra and vibrational emission cross sections from 330–1100 nm for N2. ApJS 2011, 196, 13.10.1088/0067-0049/196/1/13. DOI

Fatima H.; Ullah M. U.; Ahmad S.; Imran M.; Sajjad S.; Hussain S.; Qayyum A. Qayyum, Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma. SN Appl. Sci. 2021, 3, 646.10.1007/s42452-021-04651-z. DOI

Qayyum A.; Zeb S.; Ali S.; Waheed A.; Zakaullah M. Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma. Plasma Chem. Plasma Process. 2005, 25, 551.10.1007/s11090-005-4999-9. DOI

Lago V.; Lebehot A.; Dudeck M.; Pellerin S.; Renault T.; Echegut P. Entry Conditions in Planetary Atmospheres: Emission Spectroscopy of Molecular Plasma Arcjets. Journal of Thermophysics and Heat Transfer 2001, 15, 168.10.2514/2.6605. DOI

Ndiaye A. A.; Lago V. Optical spectroscopy investigation of N2-CH4 plasma jets simulating Titan atmospheric entry conditions. Plasma Sources Sci. Technol. 2011, 20, 015015.10.1088/0963-0252/20/1/015015. DOI

Bazinette R.; Paillol J.; Massines F. Optical emission spectroscopy of glow, Townsend-like and radiofrequency DBDs in an Ar/NH3 mixture. Plasma Sources Sci. Technol. 2015, 24, 055021.10.1088/0963-0252/24/5/055021. DOI

Lin Z.; Abe S.; Chen Z.; Jaiswal S.; Koel B. E. Kinetic Modeling Analysis of Ar Addition to Atmospheric Pressure N2–H2 Plasma for Plasma-Assisted Catalytic Synthesis of NH3. J. Phys. Chem. A 2024, 128, 2427.10.1021/acs.jpca.3c06841. PubMed DOI

Liu J.; Zhu X.; Hu X.; Zhang F.; Tu X. Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor: effect of argon addition. Vacuum 2022, 197, 110786.10.1016/j.vacuum.2021.110786. DOI

Thejaswini H. C.; Peglow S.; Sushkov V.; Hippler R. Infrared Spectroscopy of CH4/N2 and C2Hm/N2 (m = 2, 4, 6) Gas Mixtures in a Dielectric Barrier Discharge. Plasma Chem. Plasma Process. 2014, 34, 1157.10.1007/s11090-014-9557-x. DOI

Navascues P.; Obrero-Perez J. M.; Cotrino J.; Gonzalez-Elipe A. R.; Gomez-Ramirez A. Unraveling Discharge and Surface Mechanisms in Plasma-Assisted Ammonia Reactions. ACS Sustainable Chem. Eng. 2020, 8, 14855.10.1021/acssuschemeng.0c04461. DOI

Caridade P. J. S. B.; Rodrigues S. P. J.; Sousa F.; Varandas A. J. C. J. Phys. Chem. A 2005, 109, 2356.10.1021/jp045102g. PubMed DOI

Müller M.; Piel F.; Gutmann R.; Sulzer P.; Hartungen E.; Wisthaler A. A novel method for producing NH4+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. Int. J. Mass Spectrom. 2020, 447, 116254.10.1016/j.ijms.2019.116254. DOI

Sode M.; Jacob W.; Schwarz-Selinger T.; Kersten H. Measurement and modeling of neutral, radical, and ion densities in H2–N2–Ar plasmas. J. Appl. Phys. 2015, 117, 083303.10.1063/1.4913623. DOI

Carrasco E.; Jimenez-Redondo M.; Tanarro I.; Herrero V. J. Neutral and ion chemistry in low pressure dc plasmas of H2/N2 mixtures: routes for the efficient production of NH3 and NH4+. Phys. Chem. Chem. Phys. 2011, 13, 19561.10.1039/c1cp22284h. PubMed DOI

Carrasco E.; Tanarro I.; Herrero V. J.; Cernicharo J. Proton transfer chains in cold plasmas of H2 with small amounts of N2. The prevalence of NH4+. Phys. Chem. Chem. Phys. 2013, 15, 1699.10.1039/C2CP43438E. PubMed DOI

Mao M.; Bogaerts A. Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures. J. Phys. D: Appl. Phys. 2010, 43, 205201.10.1088/0022-3727/43/20/205201. DOI

Steen M. L.; Kull K. R.; Fisher E. R. Fisher, Comparison of surface interactions for NH and on polymer and metal substrates during plasma processing. J. Appl. Phys. 2002, 92, 55.10.1063/1.1486038. DOI

Pulsipher D. J. V.; Fisher E. R. NH2 and NH Surface Production in Pulsed NH3 Plasmas on TiO2: A Steady-State Probe of Short Pulse Plasmas. Plasma Process. Polym. 2013, 10, 6.10.1002/ppap.201200060. DOI

Patil B. S.; Cherkasov N.; Srinath N. V.; Lang J.; Ibhadon A. O.; Wang Q.; Hessel V. The role of heterogeneous catalysts in the plasma-catalytic ammonia synthesis. Catal. Today 2021, 362, 2.10.1016/j.cattod.2020.06.074. DOI

Zhou Y.; Peng X.; Zhang T.; Cai H.; Lin B.; Zheng L.; Wang X.; Jiang L. Essential Role of Ru-Anion Interaction in Ru-Based Ammonia Synthesis Catalysts. ACS Catal. 2022, 12, 7633.10.1021/acscatal.2c01486. DOI

Mehta P.; Barboun P.; Go D. B.; Hicks J. C.; Schneider W. F. Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. ACS Energy Letters 2019, 4, 1115.10.1021/acsenergylett.9b00263. DOI

Iwamoto M.; Akiyama M.; Aihara K.; Deguchi T. Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catal. 2017, 7, 6924.10.1021/acscatal.7b01624. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...