Establishment of an efficient Agrobacterium tumefaciens-mediated transformation system for an Armillaria species, a host of the fully mycoheterotrophic plant Gastrodia elata
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
202301AT070379
Fundamental Research Funds for the Central Universities
202001AS070021
Applied Basic Research Foundation of Yunnan Province
XZ202201YD0006C
Central Government Guides Local Science and Technology Development Fund Projects
PubMed
39644422
DOI
10.1007/s12223-024-01230-8
PII: 10.1007/s12223-024-01230-8
Knihovny.cz E-zdroje
- Klíčová slova
- Agrobacterium tumefaciens-mediated transformation, Armillaria, Gastrodia elata, Gene overexpression, RNA interference,
- Publikační typ
- časopisecké články MeSH
The genus Armillaria (Basidiomycota, Agaricales, Physalacriaceae) comprises pathogenic fungi that cause root-rot disease in plants, as well as species with low pathogenicity, some of which are hosts of the fully mycoheterotrophic orchid plant Gastrodia elata (Orchidaceae). To investigate the mechanisms underlying such special interactions between Armillaria fungi and G. elata, it is crucial to establish genetic transformation platforms for the Armillaria fungi and G. elata. In this study, an Armillaria strain Arm37 was isolated from G. elata, which can form symbiosis with G. elata in axenic culture under laboratory conditions. A vector pYT-EV containing a cassette for hygromycin-resistance selection and a cassette for expressing or silencing target genes was constructed. An Agrobacterium tumefaciens-mediated transformation (ATMT) system for Arm37 was successfully developed and optimized to achieve a transformation efficiency of 32%. The ATMT system was successfully used to express the reporter genes eGFP encoding enhanced green fluorescent protein and GUS encoding β-glucuronidase and to effectively silence the endogenous gene URA3 encoding orotidine-5'-phosphate decarboxylase in Arm37. This ATMT system established for Arm37 provides an efficient genetic tool for exploring the Arm37 genes that are involved in the unique interaction between the Armillaria fungi and fully mycoheterotrophic plant G. elata.
Zobrazit více v PubMed
Allen GC, Flores-Vergara MA, Krasynanski S et al (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. https://doi.org/10.1038/nprot.2006.384 PubMed DOI
Baumgartner K, Fujiyoshi P, Foster GD et al (2010) Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea. Appl Microbiol Biotechnol 76:7990–7996. https://doi.org/10.1128/AEM.01049-10 DOI
Cai Q, Qiao L, Wang M et al (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129. https://doi.org/10.1126/science.aar4142 PubMed DOI PMC
Chang SS, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323. https://doi.org/10.1146/annurev-micro-092611-150138 PubMed DOI PMC
Chen X, Stone M, Schlagnhaufer C et al (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513. https://doi.org/10.1128/aem.66.10.4510-4513.2000 PubMed DOI PMC
Chen N, Chen M, Wu T et al (2020) The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 36:140. https://doi.org/10.1007/s11274-020-02916-0 PubMed DOI
Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55. https://doi.org/10.3389/fgene.2012.00055 PubMed DOI PMC
de Groot MJ, Bundock P, Hooykaas PJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842. https://doi.org/10.1038/nbt0998-839 PubMed DOI
Ding Y, Liang S, Lei J et al (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 166:314–322. https://doi.org/10.1016/j.micres.2010.07.001 PubMed DOI
Doehlemann G, Okmen B, Zhu W et al (2017) Plant pathogenic fungi. Microbiol Spectr 5: FUNK-0023–201. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016
Doty JE, Cheo PC (1974) Light inhibition of thallus growth of Armillaria mellea. Phytopathology 64:763–764. https://doi.org/10.1094/Phyto-64-763 DOI
Ford KL, Baumgartner K, Henricot B et al (2015) A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors. Fungal Biol 119:859–869. https://doi.org/10.1016/j.funbio.2015.06.007 PubMed DOI
Ford KL, Baumgartner K, Henricot B et al (2016) A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 6:29226. https://doi.org/10.1038/srep29226 PubMed DOI PMC
Genre A, Lanfranco L, Perotto S et al (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 8:649–660. https://doi.org/10.1038/s41579-020-0402-3 DOI
Govender N, Wong MY (2017) Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 107:483–490. https://doi.org/10.1094/PHYTO-02-16-0062-R PubMed DOI
Guo T, Wang HC, Xue WQ et al (2016) Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE 11:e0154794. https://doi.org/10.1371/journal.pone.0154794 PubMed DOI PMC
Helber N, Wippel K, Sauer N et al (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823. https://doi.org/10.1105/tpc.111.089813 PubMed DOI PMC
Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451. https://doi.org/10.1016/s1360-1385(00)01740-4 PubMed DOI
Hooykaas PJJ, van Heusden GPH, Niu X et al (2018) Agrobacterium-mediated transformation of yeast and fungi. In: Gelvin SB (ed) Agrobacterium Biology. Springer, London, pp 349–374 DOI
Hua Z, Teng X, Huang J et al (2024) The Armillaria response to Gastrodia elata is partially mediated by strigolactone-induced changes in reactive oxygen species. Microbiol Res 278:127536. https://doi.org/10.1016/j.micres.2023.127536 DOI
Idnurm A, Bailey AM, Cairns TC et al (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0 PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404 PubMed DOI
Leake JR (1994) The biology of myco-heterotrophic (saprophytic) plants. New Phytol 127:171–216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x PubMed DOI
Li D, Tang Y, Lin J et al (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Fact 16:168. https://doi.org/10.1186/s12934-017-0785-7 PubMed DOI PMC
Liu D, Garrigues S, de Vries RP (2023) Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 107:5019–5033. https://doi.org/10.1007/s00253-023-12660-8 PubMed DOI PMC
Merckx VSFT (2013) Mycoheterotrophy: the biology of plants living on fungi. Springer, London DOI
Merckx V, Gomes SIF (2023) Mycoheterotrophy. Curr Biol 33:463–465. https://doi.org/10.1016/j.cub.2023.02.009 DOI
Moller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771. https://doi.org/10.1038/nrmicro.2017.76 PubMed DOI
Negrao DR, Mischan MM, de Pinho SZ et al (2021) How temperature variation affects white-rot fungi mycelial growth dynamics: a nonlinear mixed models approach. Fungal Biol 125:860–868. https://doi.org/10.1016/j.funbio.2021.05.007 PubMed DOI
Ota Y, Fukuda K, Suzuki K (1998) The nonheterothallic life cycle of Japanese Armillaria mellea. Mycologia 90:396–405. https://doi.org/10.2307/3761398 DOI
Peabody RB, Peabody DC, Tyrrell MG et al (2005) Haploid vegetative mycelia of Armillaria gallica show among-cell-line variation for growth and phenotypic plasticity. Mycologia 97:777–787. https://doi.org/10.1080/15572536.2006.11832769 PubMed DOI
Poyedinok NL, Blume YB (2018) Advances, problems, and prospects of genetic transformation of fungi. Cytol Genet 52:139–154. https://doi.org/10.3103/S009545271802007x DOI
Rishbeth J (1978) Effects of soil temperature and atmosphere on growth of Armillaria Rhizomorphs. T Brit Mycol Soc 70:213–220. https://doi.org/10.1016/S0007-1536(78)80033-3 DOI
Schuster M, Kahmann R (2019) CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol 130:43–53. https://doi.org/10.1016/j.fgb.2019.04.016 PubMed DOI
Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70. https://doi.org/10.1016/j.tplants.2008.11.004 PubMed DOI
Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91:145–155. https://doi.org/10.1016/j.biocel.2017.06.016 PubMed DOI
Shen G, Zhang J, Lei Y et al (2023) Between-plant signaling. Annu Rev Plant Biol 74:367–386. https://doi.org/10.1146/annurev-arplant-070122-015430 PubMed DOI
Shi J, Wang X, Wang E (2023) Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu Rev Plant Biol 74:569–607. https://doi.org/10.1146/annurev-arplant-061722-090342 PubMed DOI
Sipos G, Prasanna AN, Walter MC et al (2017) Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol 1:1931–1941. https://doi.org/10.1038/s41559-017-0347-8 PubMed DOI
Sipos G, Anderson JB, Nagy LG (2018) Armillaria. Curr Biol 28:297–298. https://doi.org/10.1016/j.cub.2018.01.026 DOI
Staab JF, Sundstrom P (2003) URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol 11:69–73. https://doi.org/10.1016/S0966-842x(02)00029-X PubMed DOI
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 PubMed DOI PMC
Taylor RG, Walker DC, McInnes RR (1993) E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 21:1677–1678. https://doi.org/10.1093/nar/21.7.1677 PubMed DOI PMC
Teng X, Han P, Zhang X et al (2022) Optimization of Agrobacterium-mediated genetic transformation system of Armillaria gallica. Chin J Exp Traditi Med Form 28:124–130. https://doi.org/10.13422/j.cnki.syfjx.20220314 DOI
Tsuzuki S, Handa Y, Takeda N et al (2016) Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol Plant-Microbe Interact 29:277–286. https://doi.org/10.1094/MPMI-10-15-0234-R PubMed DOI
Umata H, Ota Y, Yamada M et al (2013) Germination of the fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal specificity and does not require direct seed-mycobiont contact. Mycoscience 54:343–352. https://doi.org/10.1016/j.myc.2012.12.003 DOI
Vincent D, Rafiqi M, Job D (2019) The multiple facets of plant-fungal interactions revealed through plant and fungal secretomics. Front Plant Sci 10:1626. https://doi.org/10.3389/fpls.2019.01626 PubMed DOI
Wang C, Wang Y, Bao Z et al (2005) An optimized isolation and purification method for Armillaria mellea complexes. J Wuhan Bot Res 23:478–481
Wang J, Guo L, Zhang K et al (2008) Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol 99:8524–8527. https://doi.org/10.1016/j.biortech.2008.03.007 PubMed DOI
Wang M, Weiberg A, Lin FM et al (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151. https://doi.org/10.1038/Nplants.2016.151 PubMed DOI PMC
Wang S, Chen H, Tang X et al (2017) Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 101:8063–8075. https://doi.org/10.1007/s00253-017-8486-z PubMed DOI
Wang S, Xie X, Che X et al (2023) Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress. Plant Biotechnol J 21:866–883. https://doi.org/10.1111/pbi.14006 PubMed DOI PMC
Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123. https://doi.org/10.1126/science.1239705 PubMed DOI PMC
Weiberg A, Bellinger M, Jin HL (2015) Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 32:207–215. https://doi.org/10.1016/j.copbio.2014.12.025 PubMed DOI PMC
Wong-Bajracharya J, Singan VR, Monti R et al (2022) The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci U S A 119:e2103527119. https://doi.org/10.1073/pnas.2103527119 PubMed DOI PMC
Wu YN, Wen SH, Zhang W et al (2023) Gastrodia elata BI:a comprehensive review of its traditional use, botany, phytochemistry, pharmacology, and pharmacokinetics. Evid-based Complement Altern Med 2023:5606021. https://doi.org/10.1155/2023/5606021 DOI
Xie X, Lin H, Peng X et al (2016) Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita tungal symbiont. Mol Plant 9:1583–1608. https://doi.org/10.1016/j.molp.2016.08.011 PubMed DOI
Xu Y, Lei Y, Su Z et al (2021) A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J 108:1609–1623. https://doi.org/10.1111/tpj.15528 PubMed DOI
Xu J, Ran Y, Guo S (1989) Studies on the life cycle of Gastrodia elata. Acta Aca Med Sin 11:237–241+322–325
Yan LL, Xu RP, Zhou Y et al (2019) Effects of medium composition and genetic background on Agrobacterium-mediated transformation efficiency of Lentinula edodes. Genes 10:467. https://doi.org/10.3390/genes10060467 PubMed DOI PMC
Yu Z, Fischer R (2019) Light sensing and responses in fungi. Nat Rev Microbiol 17:25–36. https://doi.org/10.1038/s41579-018-0109-x PubMed DOI
Zand Karimi H, Innes RW (2022) Molecular mechanisms underlying host-induced gene silencing. Plant Cell 34:3183–3199. https://doi.org/10.1093/plcell/koac165 PubMed DOI PMC
Zeng T, Rodriguez-Moreno L, Mansurkhodzaev A et al (2020) A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytol 225:448–460. https://doi.org/10.1111/nph.16245 PubMed DOI
Zhan HD, Zhou HY, Sui YP et al (2016) The rhizome of Gastrodia elata Blume - an ethnopharmacological review. J Ethnopharmacol 189:361–385. https://doi.org/10.1016/j.jep.2016.06.057 PubMed DOI
Zhang J, Shi L, Chen H et al (2014) An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 169:741–748. https://doi.org/10.1016/j.micres.2014.01.004 PubMed DOI
Zhou X (1981) The life cycle of Gastrodia elata Blume. Acta Bot Yunnanica 3:197–202