Variability of the photosynthetic machinery tolerance when imposed to rapidly or slowly imposed dehydration in native Mediterranean plants

. 2022 ; 60 (1) : 88-101. [epub] 20220223

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649007

Dehydration affects the photosynthetic apparatus. The impact of dehydration on photosynthesis was assessed in twelve Mediterranean species representing different growth forms. Rapid and slow dehydration experiments were conducted to (1) compare the impact of water stress among species and growth forms, (2) rank species according to their drought tolerance. Rapid dehydration reduced the electron transport up to PSI, the reduction being linearly related to leaf relative water content (RWC), except for the deciduous species. Specific energy fluxes per reaction center and maximum photochemical activity of PSII remained relatively stable until 10-30% RWC. The modification pattern of the studied parameters was similar for all the growth forms. Slow rehydration increased specific energy fluxes and decreased quantum yields. The dehydration pattern was similar among growth forms, while the recovery pattern was species-specific. Drought tolerance ranking through drought factor index was relatively modified with the integrated biomarker response method.

Zobrazit více v PubMed

Bednaříková M., Váczi P., Lazár D., Barták M.: Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. – Photosynth. Res. 145: 159-177, 2020. https://link.springer.com/article/10.1007%2Fs11120-020-00773-4 PubMed

Beliaeff B., Burgeot T.: Integrated biomarker response: A useful tool for ecological risk assessment. – Environ. Toxicol. Chem. 21: 1316-1322, 2002. https://setac.onlinelibrary.wiley.com/doi/10.1002/etc.5620210629 PubMed DOI

Broeg K., Lehtonen K.K.: Indices for the assessment of environmental pollution of the Baltic Sea coasts: Integrated assessment of a multi-biomarker approach. – Mar. Pollut. Bull. 53: 508-522, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0025326X06000658?via%3Dihub PubMed

Bussotti F.: Assessment of stress conditions in Quercus ilex L. leaves by O-J-I-P chlorophyll a fluorescence analysis. – Plant Biosyst. 138: 101-109, 2004. https://www.tandfonline.com/doi/abs/10.1080/11263500412331283708 DOI

Campos H., Trejo C., Peña-Valdivia C.B. et al.: Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. – Environ. Exp. Bot. 98: 56-64, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0098847213001706?via%3Dihub

Ceppi M.G., Oukarroum A., Çiçek N. et al..: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. – Physiol. Plantarum 144: 277-288, 2012. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2011.01549.x PubMed DOI

Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. – Ann. Bot.-London 103: 551-560, 2009. https://academic.oup.com/aob/article/103/4/551/164096 PubMed PMC

Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought – from genes to the whole plant. – Funct. Plant Biol. 30: 239-264, 2003. https://www.publish.csiro.au/fp/FP02076 PubMed

Chondrogiannis C., Grammatikopoulos G.: Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms. – Photosynth. Res. 130: 427-444, 2016. https://link.springer.com/article/10.1007%2Fs11120-016-0276-4 PubMed

Chondrogiannis C., Grammatikopoulos G.: Transition from juvenility to maturity strengthens photosynthesis in sclerophyllous and deciduous but not in semi-deciduous Mediterranean shrubs. – Environ. Exp. Bot. 180: 104265, 2021. https://www.sciencedirect.com/science/article/abs/pii/S0098847220302914?via%3Dihub

Dekov I., Tsonev T., Yordanov I.: Effects of water stress and high-temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. – Photosynthetica 38: 361-366, 2000. https://ps.ueb.cas.cz/artkey/phs-200003-0007_effects-of-water-stress-and-high-temperature-stress-on-the-structure-and-activity-of-photosynthetic-apparatus-o.php

Duarte B., Pedro S., Marques J.C. et al.: Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. – Ecol. Indic. 76: 219-229, 2017. https://www.sciencedirect.com/science/article/abs/pii/S1470160X17300298?via%3Dihub

Ferreira N.G.C., Morgado R., Santos M.J.G. et al.: Biomarkers and energy reserves in the isopod Porcellionides pruinosus: The effects of long-term exposure to dimethoate. – Sci. Total Environ. 502: 91-102, 2015. https://www.sciencedirect.com/science/article/abs/pii/S0048969714012418?via%3Dihub PubMed

Flexas J., Barbour M.M., Brendel O. et al.: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. – Plant Sci. 193-194: 70-84, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0168945212001069?via%3Dihub PubMed

Flexas J., Bota J., Cifre J. et al.: Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. – Ann. Appl. Biol. 144: 273-283, 2004. https://onlinelibrary.wiley.com/doi/10.1111/j.1744-7348.2004.tb00343.x DOI

Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic limitations in Mediterranean plants: A review. – Environ. Exp. Bot. 103: 12-23, 2014. https://www.sciencedirect.com/science/article/abs/pii/S0098847213001238?via%3Dihub

Flexas J., Medrano H.: Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. – Ann. Bot.-London 89: 183-189, 2002. https://academic.oup.com/aob/article/89/2/183/193337 PubMed PMC

Galmés J., Flexas J., Medrano H. et al.: Ecophysiology of photosynthesis in semi-arid environments. – In: Flexas J., Loreto F., Medrano H. (ed.): Terrestrial Photosynthesis in a Changing Environment. A Molecular, Physiological and Ecological Approach. Pp. 448-464. Cambridge University Press, Cambridge: 2012. https://www.cambridge.org/core/books/abs/terrestrial-photosynthesis-in-a-changing-environment/ecophysiology-of-photosynthesis-in-semiarid-environments/C8E6E9B75EDB7712DB7A239217C67958

Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. – New Phytol. 175: 81-93, 2007. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2007.02087.x PubMed DOI

Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. – BBA-Bioenergetics 1817: 1490-1498, 2012. https://www.sciencedirect.com/science/article/pii/S0005272812001521?via%3Dihub PubMed

Gomes M.T.G., da Luz A.C., dos Santos M.R. et al.: Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. – Sci. Hortic.-Amsterdam 142: 49-56, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0304423812002026?via%3Dihub

Grammatikopoulos G., Kyparissis A., Manetas Y.: Seasonal and diurnal gas exchange characteristics and water relations of the drought semi-deciduous shrub Phlomis fruticosa L. under Mediterranean field conditions. – Flora 190: 71-78, 1995. https://www.sciencedirect.com/science/article/abs/pii/S0367253017306278?via%3Dihub

Grammatikopoulos G., Manetas Y.: Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. – Can. J. Bot. 72: 1805-1811, 1994. https://cdnsciencepub.com/doi/10.1139/b94-222 DOI

Guha A., Sengupta D., Reddy A.R.: Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. – J. Photoch. Photobio. B 119: 71-83, 2013. https://www.sciencedirect.com/science/article/abs/pii/S101113441200262X?via%3Dihub PubMed

Kaiser W.M.: Effects of water deficit on photosynthetic capacity. – Physiol. Plantarum 71: 142-149, 1987. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb04631.x DOI

Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. – Acta. Physiol. Plant. 38: 102, 2016. https://link.springer.com/article/10.1007%2Fs11738-016-2113-y

Karavatas S., Manetas Y.: Seasonal patterns of photosystem 2 photochemical efficiency in evergreen sclerophylls and drought semi-deciduous shrubs under Mediterranean field conditions. – Photosynthetica 36: 41-49, 1999. https://ps.ueb.cas.cz/artkey/phs-199901-0007_seasonal-patterns-of-photosystem-2-photochemical-efficiency-in-evergreen-sclerophylls-and-drought-semi-deciduou.php

Koller S., Holland V., Brüggemann W.: Effects of drought stress on the evergreen Quercus ilex L., the deciduous Q. robur L. and their hybrid Q. × turneri Willd. – Photosynthetica 51: 574-582, 2013. https://ps.ueb.cas.cz/artkey/phs-201304-0011_effects-of-drought-stress-on-the-evergreen-quercus-ilex-l-the-deciduous-q-robur-l-and-their-hybrid-q-tur.php

Lauriano J.A., Lidon F.C., Carvalho C.A. et al.: Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. – Photosynthetica 38: 7-12, 2000. https://ps.ueb.cas.cz/artkey/phs-200001-0002_drought-effects-on-membrane-lipids-and-photosynthetic-activity-in-different-peanut-cultivars.php

Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. – Plant Cell Environ. 25: 275-294, 2002. https://onlinelibrary.wiley.com/doi/full/10.1046/j.0016-8025.2001.00814.x PubMed DOI

Lawlor D.W., Tezara W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. – Ann. Bot.-London 103: 561-579, 2009. https://academic.oup.com/aob/article/103/4/561/164639 PubMed PMC

Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. – Funct. Plant Biol. 33: 9-30, 2006. https://www.publish.csiro.au/fp/FP05095 PubMed

Lazár D, Nauš J.: Statistical properties of chlorophyll fluorescence induction parameters. – Photosynthetica 35: 121-127, 1998. https://ps.ueb.cas.cz/artkey/phs-199801-0017_statistical-properties-of-chlorophyll-fluorescence-induction-parameters.php

Matos M.C., Campos P.S., Ramalho J.C. et al. Photosynthetic activity and cellular integrity of the Andean legume Pachyrhizus ahipa (Wedd.) Parodi under heat and water stress. – Photosynthetica 40: 493-501, 2002. https://ps.ueb.cas.cz/artkey/phs-200204-0002_photosynthetic-activity-and-cellular-integrity-of-the-andean-legume-pachyrhizus-ahipa-wedd-parodi-under-heat.php

Nogués S., Alegre L.: An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants. – Funct. Plant Biol. 29: 621-630, 2002. https://www.publish.csiro.au/fp/PP01117 PubMed

Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. – Environ. Exp. Bot. 60: 438-446, 2007. https://www.sciencedirect.com/science/article/abs/pii/S0098847207000305?via%3Dihub#!

Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. – Physiol. Plantarum 137: 188-199, 2009. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2009.01273.x PubMed DOI

Oukarroum A., Strasser R.J., Schansker G.: Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. – Photosynth. Res. 111: 303-314, 2012. https://link.springer.com/article/10.1007%2Fs11120-012-9728-7 PubMed

Petsas A., Grammatikopoulos G.: Drought resistance and recovery of photosystem II activity in a Mediterranean semi-deciduous shrub at the seedling stage. – Photosynthetica 47: 284-292, 2009. https://ps.ueb.cas.cz/artkey/phs-200902-0016_drought-resistance-and-recovery-of-photosystem-ii-activity-in-a-mediterranean-semi-deciduous-shrub-at-the-seedl.php

Redillas M.C.F.R., Strasser R.J., Jeong J.S. et al.: The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. – Plant Biotechnol. Rep. 5: 169-175, 2011. https://link.springer.com/article/10.1007%2Fs11816-011-0170-7

Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B. 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed

Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://ps.ueb.cas.cz/artkey/phs-201801-0008_chlorophyll-a-fluorescence-induction-can-just-a-one-second-measurement-be-used-to-quantify-abiotic-stress-resp.php

Strasser R.J., Stirbet A.D.: Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). – Math. Comput. Simulat. 48: 3-9, 1998. https://www.sciencedirect.com/science/article/abs/pii/S0378475498001505?via%3Dihub

Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. – BBA-Bioenergetics 1797: 1313-1326, 2010. https://www.sciencedirect.com/science/article/pii/S0005272810001143?via%3Dihub PubMed

Strasser R.J., Tsimilli-Michael M., Srivastava A.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. – In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 443-480. Taylor & Francis, London: 2000. https://www.researchgate.net/publication/252250818_The_fluorescence_transient_as_a_tool_to_characterize_and_screen_photosynthetic_samples

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007%2F978-1-4020-3218-9_12

Tseliou E., Chondrogiannis C., Kalachanis D. et al.: Integration of biophysical photosynthetic parameters into one photochemical index for early detection of Tobacco Mosaic Virus infection in pepper plants. – J. Plant Physiol. 267: 153542, 2021. https://www.sciencedirect.com/science/article/abs/pii/S0176161721001814?via%3Dihub PubMed

Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0010_special-issue-in-honour-of-prof-reto-j-strasser-8211-revisiting-jip-test-an-educative-review-on-concepts.php

Tsimilli-Michael M., Strasser R.J.: In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. – In: Varma A. (ed.): Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd Edition. Pp. 679-703. Springer, Berlin-Heidelberg: 2008. https://link.springer.com/chapter/10.1007/978-3-540-78826-3_32 DOI

Turner N.C.: Techniques and experimental approaches for the measurement of plant water status. – Plant Soil 58: 339-366, 1981. https://link.springer.com/article/10.1007%2FBF02180062

van Heerden P.D.R., Swanepoel J.W., Krüger G.H.J.: Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. – Environ. Exp. Bot. 61: 124-136, 2007. https://www.sciencedirect.com/science/article/abs/pii/S0098847207000792?via%3Dihub

Živčák M., Brestič M., Kalaji H.M., Govindjee: Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? – Photosynth. Res. 119: 339-354, 2014. https://link.springer.com/article/10.1007/s11120-014-9969-8 PubMed DOI PMC

Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. – Plant Soil Environ. 54: 133-139, 2008. https://www.agriculturejournals.cz/web/pse.htm?volume=54&firstPage=133&type=publishedArticle

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...