Selenium improves wheat antioxidant capacity, photosynthetic capacity, and growth under cadmium stress
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
39649360
PubMed Central
PMC11622546
DOI
10.32615/ps.2024.027
PII: PS62232
Knihovny.cz E-resources
- Keywords
- Triticum aestivum, antioxidant enzyme, cadmium treatment, nonenzymatic antioxidant, sodium selenite,
- Publication type
- Journal Article MeSH
Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (qN), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, qN and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na2SeO3). Consequently, 10 μM Na2SeO3 may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.
See more in PubMed
Aebi H.: Catalase in vitro. – Method. Enzymol. 105: 121-126, 1984. 10.1016/S0076-6879(84)05016-3 PubMed DOI
Bano N., Khan S., Hamid Y. et al.: Effect of foliar application of nanoparticles on growth, physiology, and antioxidant enzyme activities of lettuce (Lactuca sativa L.) plants under cadmium toxicity. – Environ. Sci. Pollut. Res. 30: 99310-99325, 2023. 10.1007/s11356-023-29241-x PubMed DOI
Basit F., Abbas S., Zhu M. et al.: Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. – Environ. Sci. Pollut. Res. 30: 120044-120062, 2023. 10.1007/s11356-023-30625-2 PubMed DOI
Brennan T., Frenkel C.: Involvement of hydrogen peroxide in the regulation of senescence in pear. – Plant Physiol. 59: 411-416, 1977. 10.1104/pp.59.3.411 PubMed DOI PMC
Chi G., Fang Y., Zhu B. et al.: Intercropping with Brassica juncea L. enhances maize yield and promotes phytoremediation of cadmium-contaminated soil by changing rhizosphere properties. – J. Hazard. Mater. 461: 132727, 2024. 10.1016/j.jhazmat.2023.132727 PubMed DOI
Chu J., Yao X., Zhang Z.: Responses of wheat seedlings to exogenous selenium supply under cold stress. – Biol. Trace Elem. Res. 136: 355-363, 2010. 10.1007/s12011-009-8542-3 PubMed DOI
da Silva D.L., de Mello Prado R., Tenesaca L.F.L. et al.: Silicon attenuates calcium deficiency in rocket plants by increasing the production of non-enzymatic antioxidants compounds. – Sci. Hortic.-Amsterdam 285: 110169, 2021. 10.1016/j.scienta.2021.110169 DOI
Diao M., Ma L., Wang J. et al.: Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. – J. Plant Growth Regul. 33: 671-682, 2014. 10.1007/s00344-014-9416-2 DOI
Elkelish A.A., Soliman M.H., Alhaithloul H.A., El-Esawi M.A.: Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. – Plant Physiol. Biochem. 137: 144-153, 2019. 10.1016/j.plaphy.2019.02.004 PubMed DOI
Foyer C.H., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling. – New Phytol. 146: 359-388, 2002. 10.1046/j.1469-8137.2000.00667.x DOI
Gao M., Xu Y., Chang X., Song Z.: Combined effects of carbon nanotubes and cadmium on the photosynthetic capacity and antioxidant response of wheat seedlings. – Environ. Sci. Pollut. Res. 28: 34344-34354, 2021. 10.1007/s11356-021-13024-3 PubMed DOI
Giannopolitis C.N., Ries S.K.: Superoxide dismutases: I. Occurrence in higher plants. – Plant Physiol. 59: 309-314, 1977. 10.1104/pp.59.2.309 PubMed DOI PMC
Grace S.C., Logan B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. – Plant Physiol. 112: 1631-1640, 1996. 10.1104/pp.112.4.1631 PubMed DOI PMC
Griffith O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. – Anal. Biochem. 106: 207-212, 1980. 10.1016/0003-2697(80)90139-6 PubMed DOI
Hajlaoui F., Hajlaoui H., Krouma A.: Physio-biochemical response to exogenous selenium application of tomatoes (Solanum lycopersicum L.) cultivated in the field under saline irrigation. – Russ. J. Plant Physiol. 70: 142, 2023. 10.1134/S1021443723601593 DOI
He S., Lian X., Zhang B. et al.: Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. – Environ. Sci. Pollut. Res. 30: 67552-67564, 2023. 10.1007/s11356-023-27130-x PubMed DOI
Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. – Arch. Biochem. Biophys. 125: 189-198, 1968. 10.1016/0003-9861(68)90654-1 PubMed DOI
Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. – Physiol. Plantarum 98: 685-692, 1996. 10.1034/j.1399-3054.1996.980402.x DOI
Komazec B., Cvjetko P., Balen B. et al.: The occurrence of oxidative stress induced by silver nanoparticles in Chlorella vulgaris depends on the surface-stabilizing agent. – Nanomaterials 13: 1967, 2023. 10.3390/nano13131967 PubMed DOI PMC
Li B., Fu Y., Li X. et al.: Brassinosteroids alleviate cadmium phytotoxicity by minimizing oxidative stress in grape seedlings: Toward regulating the ascorbate-glutathione cycle. – Sci. Hortic.-Amsterdam 299: 111002, 2022a. 10.1016/j.scienta.2022.111002 DOI
Li H., Liu X., Wassie M., Chen L.: Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. – Environ. Sci. Pollut. Res. 27: 9490-9502, 2020. 10.1007/s11356-019-06628-3 PubMed DOI
Li H., Wang H., Zhao J. et al.: Physio-biochemical and transcriptomic features of arbuscular mycorrhizal fungi relieving cadmium stress in wheat. – Antioxidants 11: 2390, 2022b. 10.3390/antiox11122390 PubMed DOI PMC
Liu B., An C., Jiao S. et al.: Impacts of the inoculation of Piriformospora indica on photosynthesis, osmoregulatory substances, and antioxidant enzymes of alfalfa seedlings under cadmium stress. – Agriculture 12: 1928, 2022. 10.3390/agriculture12111928 DOI
Liu Z., Wu X., Yan J. et al.: Silicon reduces cadmium accumulation and toxicity by regulating transcriptional and physiological pathways, and promotes the early growth of tomato seedlings. – Ind. Crop. Prod. 206: 117720, 2023. 10.1016/j.indcrop.2023.117720 DOI
Lu Y., Wu J., Li J.: The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.). – Environ. Sci. Pollut. Res. 30: 89927-89941, 2023. 10.1007/s11356-023-28631-5 PubMed DOI
Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. 10.1093/oxfordjournals.pcp.a076232 DOI
Nasirzadeh L., Kvarnheden A., Sorkhilaleloo B. et al.: Foliar-applied selenium nanoparticles can alleviate soil-cadmium stress through physio-chemical and stomatal changes to optimize yield, antioxidant capacity, and fatty acid profile of wheat (Triticum aestivum L.). – J. Soil Sci. Plant Nutr. 22: 2469-2480, 2022. 10.1007/s42729-022-00821-z DOI
Rady M.M., Alharby H.F., Desoky E.M. et al.: Citrate-containing lemon juice, as an organic substitute for chemical citric acid, proactively improves photosynthesis, antioxidant capacity, and enzyme gene expression in cadmium-exposed Phaseolus vulgaris. – S. Afr. J. Bot. 160: 88-101, 2023. 10.1016/j.sajb.2023.07.004 DOI
Saidi I., Chtourou Y., Djebali W.: Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. – J. Plant Physiol. 171: 85-91, 2014. 10.1016/j.jplph.2013.09.024 PubMed DOI
Sajedi N.A., Ardakani M.R., Madani H. et al.: The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. – Physiol. Mol. Biol. Pla. 17: 215-222, 2011. 10.1007/s12298-011-0067-5 PubMed DOI PMC
Sepehri A., Gharehbaghli N.: Selenium alleviate cadmium toxicity by improving nutrient uptake, antioxidative and photosynthetic responses of garlic. – Russ. J. Plant Physiol. 66: 152-159, 2019. 10.1134/S1021443719010151 DOI
Shan C., Liang Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. – Plant Sci. 178: 130-139, 2010. 10.1016/j.plantsci.2009.11.002 DOI
Shan C., Ou X.: Hydrogen peroxide is involved in the regulation of ascorbate and glutathione metabolism in wheat leaves under water stress. – Cereal Res. Commun. 46: 21-30, 2018. 10.1556/0806.45.2017.053 DOI
Shin Y.K., Bhandari S.R., Jo J.S. et al.: Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. – Horticulturae 7: 238, 2021. 10.3390/horticulturae7080238 DOI
Song C., Manzoor M.A., Mao D. et al.: Photosynthetic machinery and antioxidant enzymes system regulation confers cadmium stress tolerance to tomato seedlings pretreated with melatonin. – Sci. Hortic.-Amsterdam 323: 112550, 2024. 10.1016/j.scienta.2023.112550 DOI
Song Y., Xiang F., Zhang G. et al.: Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. – Front. Plant Sci. 7: 181, 2016. 10.3389/fpls.2016.00181 PubMed DOI PMC
Tang H., Liu Y., Gong X. et al.: Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. – Environ. Sci. Pollut. Res. 22: 9999-10008, 2015. 10.1007/s11356-015-4187-2 PubMed DOI
Wu Z., Liu S., Zhao J. et al.: Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. – Environ. Exp. Bot. 133: 1-11, 2017. 10.1016/j.envexpbot.2016.09.005 DOI
Yao X., Chu J., Ba C.: Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. – Biol. Trace Elem. Res. 136: 96-105, 2010. 10.1007/s12011-009-8520-9 PubMed DOI
Zembala M., Filek M., Walas S. et al.: Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. – Plant Soil 329: 457-468, 2010. 10.1007/s11104-009-0171-2 DOI
Zhang J., Liang X., Xie S. et al.: Effects of hydrogen sulfide on the growth and physiological characteristics of Miscanthus sacchariflorus seedlings under cadmium stress. – Ecotox. Environ. Safe. 263: 115281, 2023. 10.1016/j.ecoenv.2023.115281 PubMed DOI
Zhao X., Zhang Y., Zhang X., Shan C.: Putrescine improves salt tolerance of wheat seedlings by regulating ascorbate and glutathione metabolism, photosynthetic performance, and ion homeostasis. – Plant Soil Environ. 69: 512-521, 2023. 10.17221/312/2023-PSE DOI
Zhou J., Zhang C., Du B. et al.: Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. – J. Hazard. Mater. 402: 123546, 2021. 10.1016/j.jhazmat.2020.123546 PubMed DOI
Zhou Z., Wei C., Liu H. et al.: Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. – Environ. Sci. Pollut. Res. 29: 21739-21750, 2022. 10.1007/s11356-021-17371-z PubMed DOI
Zhu Q., Li Y., Gao S., Shan C.: Praseodymium enhanced the tolerance of maize seedlings subjected to cadmium stress by up-regulating the enzymes in the regeneration and biosynthetic pathways of ascorbate and glutathione. – Plant Soil Environ. 67: 633-642, 2021.