Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649393
PubMed Central
PMC11558589
DOI
10.32615/ps.2022.049
PII: PS60529
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas, FlvB protein, Scenedesmus, chlorophyll fluorescence, far-red acclimation,
- Publikační typ
- časopisecké články MeSH
We recently developed a chlorophyll a fluorescence method (activated F0 rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: Scenedesmus quadricauda, Scenedesmus ecornis, Scenedesmus fuscus, Chlamydomonas reinhardtii, Chlorella sorokiniana, and Ettlia oleoabundans. The Scenedesmus species displayed a plant-like action spectra of F0 rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae. F0 rise was weak in a strain of C. reinhardtii, C. sorokiniana, and E. oleoabundans. Interestingly, another C. reinhardtii strain exhibited a strong F0 rise. The result indicates that the same illumination can lead to different redox states of the plastoquinone pool in different algae. Flavodiiron activity enhanced the F0 rise, presumably by oxidizing the plastoquinone pool during pre-illumination. The activity of plastid terminal oxidase, in turn, diminished the F0 rise, but to a small degree.
Molecular Plant Biology Department of Life Technologies University of Turku 20014 Turku Finland
Present address ECOMARE CESAM Department of Biology University of Aveiro 3810 193 Aveiro Portugal
Zobrazit více v PubMed
Allen J.F., Bennett J., Steinback K.E., Arntzen C.J.: Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. – Nature 291: 25-29, 1981. 10.1038/291025a0 DOI
Alric J.: Cyclic electron flow around photosystem I in unicellular green algae. – Photosynth. Res. 106: 47-56, 2010. 10.1007/s11120-010-9566-4 PubMed DOI
Alric J., Johnson X.: Alternative electron transport pathways in photosynthesis: a confluence of regulation. – Curr. Opin. Plant Biol. 37: 78-86, 2017. 10.1016/j.pbi.2017.03.014 PubMed DOI
Antal T.K., Kukarskikh G.P., Bulychev A.A. et al.: Antimycin A effect on the electron transport in chloroplasts of two Chlamydomonas reinhardtii strains. – Planta 237: 1241-1250, 2013. 10.1007/s00425-013-1843-y PubMed DOI
Antal T.K., Kukarskikh G.P., Volgusheva A.A. et al.: Hydrogen photoproduction by immobilized S-deprived Chlamydomonas reinhardtii: Effect of light intensity and spectrum, and initial medium pH. – Algal Res. 17: 38-45, 2016. 10.1016/j.algal.2016.04.009 DOI
Bolatkhan K., Kossalbayev B.D., Zayadan B.K. et al.: Hydrogen production from phototropic microorganisms: Reality and perspectives. – Int. J. Hydrogen Energ. 44: 5799-5811, 2019. 10.1016/j.ijhydene.2019.01.092 DOI
Bhatia S.K., Mehariya S., Bhatia R.K. et al.: Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. – Sci. Total Environ. 751: 141599, 2021. 10.1016/j.scitotenv.2020.141599 PubMed DOI
Depège N., Bellafiore S., Rochaix J.-D.: Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. – Science 299: 1572-1575, 2003. 10.1126/science.1081397 PubMed DOI
Desplats C., Mus F., Cuiné S. et al.: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. – J. Biol. Chem. 284: 4148-4157, 2009. 10.1074/jbc.M804546200 PubMed DOI
Endo T., Mi H., Shikanai T., Asada K.: Donation of electrons to plastoquinone by NADP(H) dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. – Plant Cell Physiol. 38: 1271-1277, 1997. 10.1093/oxfordjournals.pcp.a029115 DOI
Escoubas J.-M., Lomas M., LaRoche J., Falkowski P.G.: Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. – P. Natl. Acad. Sci. USA 92: 10237-10241, 1995. 10.1073/pnas.92.22.10237 PubMed DOI PMC
Field T.S., Nedbal L., Ort D.R.: Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. – Plant Physiol. 116: 1209-1218, 1998. 10.1104/pp.116.4.1209 PubMed DOI PMC
Finazzi G., Zito F., Barbagallo R.P., Wollman F.-A.: Contrasted effects of inhibitors of chytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: The role of QO site occupancy in LHCII kinase activation. – J. Biol. Chem. 276: 9770-9774, 2001. 10.1074/jbc.M010092200 PubMed DOI
Houille-Vernes L., Rappaport F., Wollman F.-A. et al.: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. – P. Natl. Acad. Sci. USA 108: 20820-20825, 2011. 10.1073/pnas.1110518109 PubMed DOI PMC
Ilík P., Pavlovič A., Kouřil R. et al.: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria to gymnosperms. – New Phytol. 214: 967-972, 2017. 10.1111/nph.14536 PubMed DOI
Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. – Plant Physiol. 77: 483-485, 1985. 10.1104/pp.77.2.483 PubMed DOI PMC
Jokel M., Johnson X., Peltier G. et al.: Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light. – Plant J. 94: 822-835, 2018. 10.1111/tpj.13897 PubMed DOI
Kawakami K., Tokutsu R., Kim E., Minagawa J.: Four distinct trimeric forms of light-harvesting complex II isolated from the green alga Chlamydomonas reinhardtii. – Photosynth. Res. 142: 195-201, 2019. 10.1007/s11120-019-00669-y PubMed DOI
Kubota-Kawai H., Burton-Smith R.N., Tokutsu R. et al.: Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. – J. Biol. Chem. 294: 4304-4314, 2019. 10.1074/jbc.RA118.006536 PubMed DOI PMC
Lazar D., Stirbet A., Björn L.O., Govindjee G.: Light quality, oxygenic photosynthesis and more. – Photosynthetica 60: 25-58, 2022. 10.32615/ps.2021.055 DOI
Mattila H., Khorobrykh S., Hakala-Yatkin M. et al.: Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation. – Plant J. 104: 1088-1104, 2020. 10.1111/tpj.14983 PubMed DOI
Mills J.D., Crowther D., Slovacek R.E. et al.: Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark. – BBA-Bioenergetics 547: 127-137, 1979. 10.1016/0005-2728(79)90101-4 PubMed DOI
Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. – Cell 110: 361-371, 2002. 10.1016/S0092-8674(02)00867-X PubMed DOI
Nawrocki W.J., Santabarbara S., Mosebach L. et al.: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. – Nat. Plants 2: 16031, 2016. 10.1038/nplants.2016.31 PubMed DOI
Nellaepalli S., Kodru S., Raghavendra A.S., Subramanyam R.: Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. – J. Photoch. Photobio. B 146: 24-33, 2015. 10.1016/j.jphotobiol.2015.02.013 PubMed DOI
Peltier G., Aro E.-M., Shikanai T.: The NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. – Annu. Rev. Plant Biol. 67: 55-80, 2016. 10.1146/annurev-arplant-043014-114752 PubMed DOI
Peltier G., Tolleter D., Billon E., Cournac L.: Auxiliary electron transport pathways in chloroplasts of microalgae. – Photosynth. Res. 106: 19-31, 2010. 10.1007/s11120-010-9575-3 PubMed DOI
Petrova E.V., Kukarskikh G.P., Krendeleva T.E., Antal T.K.: The mechanisms and role of photosynthetic hydrogen production by green microalgae. – Microbiology 89: 251-265, 2020. 10.1134/S0026261720030169 DOI
Pfannschmidt T., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression. – Nature 397: 625-628, 1999. 10.1038/17624 DOI
Radmer R.J., Kok B.: Photoreduction of O2 primes and replaces CO2 assimilation. – Plant Physiol. 58: 336-340, 1976. 10.1104/pp.58.3.336 PubMed DOI PMC
Rippka R., Deruelles J., Waterbury J.B. et al.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. – J. Gen. Microbiol. 111: 1-61, 1979. 10.1099/00221287-111-1-1 DOI
Rochaix J.-D.: Regulation and dynamics of the light-harvesting system. – Annu. Rev. Plant Biol. 65: 287-309, 2014. 10.1146/annurev-arplant-050213-040226 PubMed DOI
Schönfeld C., Wobbe L., Borgstädt R. et al.: The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. – J. Biol. Chem. 279: 50366-50374, 2004. 10.1074/jbc.M408477200 PubMed DOI
Shikanai T., Endo T., Hashimoto T. et al.: Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. – P. Natl. Acad. Sci. USA 95: 9705-9709, 1998. 10.1073/pnas.95.16.9705 PubMed DOI PMC
Shimakawa G., Murakami A., Niwa K. et al.: Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. – Photosynth. Res. 139: 401-411, 2019. 10.1007/s11120-018-0522-z PubMed DOI
Stensjö K., Vavitsas K., Tyystjärvi T.: Harnessing transcription for bioproduction in cyanobacteria. – Physiol. Plantarum 162: 148-155, 2018. 10.1111/ppl.12606 PubMed DOI
Sueoka N.: Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. – P. Natl. Acad. Sci. USA 46: 83-91, 1960. 10.1073/pnas.46.1.83 PubMed DOI PMC
Tokutsu R., Kato N., Bui K.H. et al.: Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii. – J. Biol. Chem. 287: 31574-31581, 2012. 10.1074/jbc.M111.331991 PubMed DOI PMC
Ueno Y., Aikawa S., Kondo A., Akimoto S.: Adaptation of light-harvesting functions of unicellular green algae to different light qualities. – Photosynth. Res. 139: 145-154, 2019. 10.1007/s11120-018-0523-y PubMed DOI
Vener A.V., van Kan P.J.M., Rich P.R. et al.: Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation. Thylakoid protein kinase deactivation by a single-turnover flash. – P. Natl. Acad. Sci. USA 94: 1585-1590, 1997. 10.1073/pnas.94.4.1585 PubMed DOI PMC
Virtanen O., Tyystjärvi E.: Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. – Photosynth. Res., 2022. 10.1007/s11120-022-00970-3 PubMed DOI PMC
Wolf B.M., Blankenship R.E.: Far-red light acclimation in diverse oxygenic photosynthetic organisms. – Photosynth. Res. 142: 349-359, 2019. 10.1007/s11120-019-00653-6 PubMed DOI