• This record comes from PubMed

Priming of Pisum sativum seeds with stabilized Pluronic P85 nanomicelles: effects on seedling development and photosynthetic function

. 2023 ; 61 (4) : 432-440. [epub] 20230925

Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection

Document type Journal Article

Natural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer Pluronic P85 (SPM) as a priming agent for Pisum sativum (var. RAN-1) seeds. We tested a wide concentration range of 0.04-30 g(SPM) L-1. Applying several structural and functional methods we revealed that the utilized nanomicelles can positively affect root length, without any negative effects on leaf anatomy and photosynthetic efficiency at 0.2 g L-1, while strong negative effects were recorded for 10 and 30 g(SPM) L-1 concerning root length, leaf histology, and photoprotection capability. Our data strongly suggest that SPM can safely be utilized for seed priming at specific concentrations and are suitable objects for further loading with plant growth regulators.

See more in PubMed

Adhikari K., Mahato G.R., Chen H. et al.: Nanoparticles and their impacts on seed germination. – In: Singh V.P., Singh S., Tripathi D.K. et al. (ed.): Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Pp. 21-31. Springer, Cham: 2021. 10.1007/978-3-030-36740-4_2 DOI

Alakhova D.Y., Kabanov A.V.: Pluronics and MDR reversal: an update. – Mol. Pharm. 11: 2566-2578, 2014. 10.1021/mp500298q PubMed DOI PMC

Almeida M., Magalhães M., Veiga F., Figueiras A.: Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. – J. Polym. Res. 25: 31, 2018. 10.1007/s10965-017-1426-x DOI

An J., Hu P., Li F. et al.: Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. – Environ. Sci.-Nano 7: 2214-2228, 2020. 10.1039/D0EN00387E DOI

Anthony P., Davey M.R., Power J.B. et al.: Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. – Plant Cell Rep. 13: 251-255, 1994. 10.1007/BF00233314 PubMed DOI

Anthony P., Jelodar N.B., Lowe K.C. et al.: Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells. – Cryobiology 33: 508-514, 1996. 10.1006/cryo.1996.0054 DOI

Anthony P., Lowe K.C., Davey M.R., Power J.B.: Strategies for promoting division of cultured plant protoplast: synergistic effects of haemoglobin (Erythrogen) and Pluronic F-68. – Plant Cell Rep. 17: 13-16, 1997. 10.1007/s002990050343 PubMed DOI

Barbulescu D.M., Burton W.A., Salisbury P.A.: Pluronic F-68: an answer for shoot regeneration recalcitrance in microspore-derived Brassica napus embryos. – In Vitro Cell. Dev.-Pl. 47: 282-288, 2011. 10.1007/s11627-011-9353-8 DOI

Batrakova E.V., Kabanov A.V.: Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. – J. Control. Release 130: 98-106, 2008. 10.1016/j.jconrel.2008.04.013 PubMed DOI PMC

Batrakova E.V., Li S., Vinogradov S.V. et al.: Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. – J. Pharmacol. Exp. Ther. 299: 483-493, 2001. https://jpet.aspetjournals.org/content/299/2/483 PubMed

Borsuk A.M., Roddy A.B., Théroux-Rancourt G., Brodersen C.R.: Structural organization of the spongy mesophyll. – New Phytol. 234: 946-960, 2022. 10.1111/nph.17971 PubMed DOI PMC

Brunetti C., Sebastiani F., Tattini M.: Review: ABA, flavonols, and the evolvability of land plants. – Plant Sci. 280: 448-454, 2019. 10.1016/j.plantsci.2018.12.010 PubMed DOI

Cancino G.O., Gill M.I.S., Anthony P. et al.: Pluronic F-68 enhanced shoot regeneration in a potencially novel citrus rootstock. – Artif. Cell. Blood Sub. Biotechnol. 29: 317-324, 2001. 10.1081/bio-100104233 PubMed DOI

Gago J., Daloso D.M., Carriquí M. et al.: Mesophyll conductance: the leaf corridors for photosynthesis. – Biochem. Soc. T. 48: 429-439, 2020. 10.1042/BST20190312 PubMed DOI

Hill M.R., MacKrell E.J., Forsthoefel C.P. et al.: Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. – Biomacromolecules 16: 1276-1282, 2015. 10.1021/acs.biomac.5b00069 PubMed DOI

Iordan-Costache M., Lowe K.C., Davey M.R., Power J.B.: Improved micropropagation of Populus spp. by Pluronic F-68. – Plant. Growth Regul. 17: 233-239, 1995. 10.1007/BF00024731 DOI

Janská A., Pecková E., Sczepaniak B. et al.: The role of the testa during the establishment of physical dormancy in the pea seed. – Ann. Bot.-London 123: 815-829, 2019. 10.1093/aob/mcy213 PubMed DOI PMC

Jarak I., Varela C.L., da Silva E.T. et al.: Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. – Eur. J. Med. Chem. 206: 112526, 2020. 10.1016/j.ejmech.2020.112526 PubMed DOI

Jeong B.: Injectable biodegradable materials. – In: Vernon B. (ed.): Injectable Biomaterials. Pp. 323-337. Woodhead Publishing, Cambridge: 2011. 10.1533/9780857091376.3.323 DOI

Johnsson M., Silvander M., Karlsson G., Edwards K.: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. – Langmuir 15: 6314-6325, 1999. 10.1021/la990288+ DOI

Kaparakis G., Alderson P.G.: Enhancement of in vitro cell proliferation of pepper (Capsicum annuum L.) by Pluronic F-68, haemoglobin and arabinogalactan proteins. – J. Hortic. Sci. Biotech. 78: 647-649, 2003. 10.1080/14620316.2003.11511678 DOI

Khatun A., Naher Z., Mahboob S. et al.: An efficient protocol for plant regeneration from the cotyledons of kenaf (Hibiscus cannabinus L.). – Biotechnology 2: 86-93, 2003. 10.3923/biotech.2003.86.93 DOI

Khehra M., Lowe K.C., Davey M.R., Power J.B.: An improved micropropagation system for Chrysanthemum based on Pluronic F-68-supplemented media. – Plant Cell Tiss. Org. Cult. 41: 87-90, 1995. 10.1007/BF00051576 DOI

Kok A.D.-X., Mohd Yusoff N.F., Sekeli R. et al.: Pluronic F-68 improves callus proliferation of recalcitrant rice cultivar via enhanced carbon and nitrogen metabolism and nutrients uptake. – Front. Plant Sci. 12: 667434, 2021. 10.3389/fpls.2021.667434 PubMed DOI PMC

Krumova S., Petrova A., Petrova N. et al.: Seed priming with single-walled carbon nanotubes grafted with Pluronic P85 preserves the functional and structural characteristics of pea plants. – Nanomaterials 13: 1332, 2023. 10.3390/nano13081332 PubMed DOI PMC

Kumar V., Laouar M.R., Davey B.J. et al.: Pluronic F-68 stimulates growth of Solanum dulcamara in culture. – J. Exp. Bot. 43: 487-493, 1992. 10.1093/jxb/43.4.487 DOI

Kurczyńska E., Godel-Jędrychowska K., Sala K., Milewska-Hendel A.: Nanoparticles–plant interaction: What we know, where we are? – Appl. Sci. 11: 5473, 2021. 10.3390/app11125473 DOI

Kwiatkowski T.A., Rose A.L., Jung R. et al.: Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. – Am. J. Physiol.-Cell Physiol. 318: C253-C262, 2020. 10.1152/ajpcell.00321.2019 PubMed DOI PMC

Lee S.-Y., Kim D.-I.: Stimulation of murine granulocite macrophage-colony stimulation factor production by Pluronic F-68 and polyethylene glycol in transgenic Nicotiana tabacum cell culture. – Biotechnol. Lett. 24: 1779-1783, 2002. 10.1023/A:1020609221148 DOI

Lehmeier C., Pajor R., Lundgren M.R. et al.: Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. – Plant J. 92: 981-994, 2017. 10.1111/tpj.13727 PubMed DOI PMC

Lowe K.C., Anthony P., Davey M.R. et al.: Enhanced protoplast growth at the interface between oxygenated fluorocarbon liquid and aqueous culture medium supplemented with Pluronic F-68. – Artif. Cell. Blood Sub. Biotechnol. 23: 417-422, 1995. 10.3109/10731199509117957 PubMed DOI

Metcalfe C.R., Chalk L.: Anatomy of Dicotyledons. Vol. I: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. Pp. 288. Clarendon Press, Oxford: 1979.

Nalewaja J.D., Praczyk T., Matysiak R.: Nitrogen fertilizer, oil, and surfactant adjuvants with nicosulfuron. – Weed Technol. 12: 585-589, 1998. http://www.jstor.org/stable/3989074

Nugraha D.H., Anggadiredja K., Rachmawati H.: Mini-review of poloxamer as a biocompatible polymer for advanced drug delivery. – Braz. J. Pharm. Sci. 58: e21125, 2022. 10.1590/s2175-97902022e21125 DOI

Ottenbrite R.M., Javan R.: Biological structures. – In: Bassani F., Liedl G.L., Wyder P. (ed.): Encyclopedia of Condensed Matter Physics. Pp. 99-108. Elsevier, Oxford: 2005. 10.1016/B0-12-369401-9/00698-7 DOI

Pereira A.E.S., Oliveira H.C., Fraceto L.F.: Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. – Sci. Rep.-UK 9: 7135, 2019. 10.1038/s41598-019-43494-y PubMed DOI PMC

Petrov P., Bozukov M., Tsvetanov C.B.: Innovative approach for stabilizing poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) micelles by forming nano-sized networks in the micelle. – J. Mater. Chem. 15: 1481-1486, 2005. 10.1039/B417563H DOI

Ranal M.A., de Santana D.G., Ferreira W.R., Mendes-Rodrigues C.: Calculating germination measurements and organizing spreadsheets. – Braz. J. Bot. 32: 849-855, 2009. 10.1590/S0100-84042009000400022 DOI

Schärtl W.: Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Pp. 191. Springer, Berlin-Heidelberg: 2007. 10.1007/978-3-540-71951-9 DOI

Smith W.K., Vogelmann T.C., DeLucia E.H. et al.: Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? – BioScience 47: 785-793, 1997. 10.2307/1313100 DOI

Szőllősi R., Molnár Á., Kondak S., Kolbert Z.: Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. – Plants-Basel 9: 1745, 2020. 10.3390/plants9121745 PubMed DOI PMC

Terashima I., Hanba Y.T., Tholen D. et al.: Leaf functional anatomy in relation to photosynthesis. – Plant Physiol. 155: 108-116, 2011. 10.1104/pp.110.165472 PubMed DOI PMC

Théroux-Rancourt G., Roddy A.B., Earles J.M. et al.: Maximum CO2 diffusion inside leaves is limited by the scaling of cell size and genome size. – Proc. R. Soc. B 288: e20203145, 2021. 10.1098/rspb.2020.3145 PubMed DOI PMC

Velikova V., Arena C., Izzo L.G. et al.: Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. – Int. J. Mol. Sci. 21: 3912, 2020. 10.3390/ijms21113912 PubMed DOI PMC

Velikova V., Petrova N., Kovács L. et al.: Single-walled carbon nanotubes modify leaf micromorphology, chloroplast ultrastructure and photosynthetic activity of pea plants. – Int. J. Mol. Sci. 22: 4878, 2021. 10.3390/ijms22094878 PubMed DOI PMC

Vinzant K., Rashid M., Khodakovskaya M.V.: Advanced applications of sustainable and biological nano-polymers in agricultural production. – Front. Plant Sci. 13: 1081165, 2023. 10.3389/fpls.2022.1081165 PubMed DOI PMC

Wang J., Segatori L., Biswal S.L.: Probing the association of triblock copolymers with supported lipid membranes using microcantilevers. – Soft Matter 10: 6417-6424, 2014. 10.1039/C4SM00928B PubMed DOI

Xin X., He Z., Hill M.R. et al.: Efficiency of biodegradable and pH-responsive polysuccinimide nanoparticles (PSI-NPs) as smart nanodelivery systems in grapefruit: in vitro cellular investigation. – Macromol. Biosci. 18: e1800159, 2018. 10.1002/mabi.201800159 PubMed DOI

Xin X., Judy J.D., Sumerlin B.B., He Z.: Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. – Environ. Chem. 17: 413-425, 2020a. 10.1071/EN19254 DOI

Xin X., Zhao F., Rho J.Y. et al.: Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. – Sci. Total Environ. 745: 141055, 2020c. 10.1016/j.scitotenv.2020.141055 PubMed DOI

Xin X., Zhao F., Zhao H. et al.: Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. – Geoderma 367: 114278, 2020b. 10.1016/j.geoderma.2020.114278 DOI

Yu J., Qiu H., Yin S. et al.: Polymeric drug delivery system based on pluronics for cancer treatment. – Molecules 26: 3610, 2021. 10.3390/molecules26123610 PubMed DOI PMC

Zhang W., Coughlin M.L., Metzger J.M. et al.: Influence of cholesterol and bilayer curvature on the interaction of PPO-PEO block copolymers with liposomes. – Langmuir 35: 7231-7241, 2019. 10.1021/acs.langmuir.9b00572 PubMed DOI PMC

Zhirnov A.E., Demina T.V., Krylova O.O. et al.: Lipid composition determines interaction of liposome membranes with Pluronic L61. – BBA-Biomembranes 1720: 73-83, 2005. 10.1016/j.bbamem.2005.11.010 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...