Priming of Pisum sativum seeds with stabilized Pluronic P85 nanomicelles: effects on seedling development and photosynthetic function
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649480
PubMed Central
PMC11586843
DOI
10.32615/ps.2023.033
PII: PS61432
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, garden pea, leaf anatomy, nanoparticles, plant biometry, poloxamer,
- Publikační typ
- časopisecké články MeSH
Natural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer Pluronic P85 (SPM) as a priming agent for Pisum sativum (var. RAN-1) seeds. We tested a wide concentration range of 0.04-30 g(SPM) L-1. Applying several structural and functional methods we revealed that the utilized nanomicelles can positively affect root length, without any negative effects on leaf anatomy and photosynthetic efficiency at 0.2 g L-1, while strong negative effects were recorded for 10 and 30 g(SPM) L-1 concerning root length, leaf histology, and photoprotection capability. Our data strongly suggest that SPM can safely be utilized for seed priming at specific concentrations and are suitable objects for further loading with plant growth regulators.
Faculty of Biology Sofia University 'St Kliment Ohridsky' Sofia Bulgaria
Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Plant Biology Biological Research Centre Szeged Hungary
Institute of Plant Physiology and Genetics Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Polymers Bulgarian Academy of Sciences Sofia Bulgaria
Zobrazit více v PubMed
Adhikari K., Mahato G.R., Chen H. et al.: Nanoparticles and their impacts on seed germination. – In: Singh V.P., Singh S., Tripathi D.K. et al. (ed.): Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Pp. 21-31. Springer, Cham: 2021. 10.1007/978-3-030-36740-4_2 DOI
Alakhova D.Y., Kabanov A.V.: Pluronics and MDR reversal: an update. – Mol. Pharm. 11: 2566-2578, 2014. 10.1021/mp500298q PubMed DOI PMC
Almeida M., Magalhães M., Veiga F., Figueiras A.: Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. – J. Polym. Res. 25: 31, 2018. 10.1007/s10965-017-1426-x DOI
An J., Hu P., Li F. et al.: Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. – Environ. Sci.-Nano 7: 2214-2228, 2020. 10.1039/D0EN00387E DOI
Anthony P., Davey M.R., Power J.B. et al.: Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. – Plant Cell Rep. 13: 251-255, 1994. 10.1007/BF00233314 PubMed DOI
Anthony P., Jelodar N.B., Lowe K.C. et al.: Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells. – Cryobiology 33: 508-514, 1996. 10.1006/cryo.1996.0054 DOI
Anthony P., Lowe K.C., Davey M.R., Power J.B.: Strategies for promoting division of cultured plant protoplast: synergistic effects of haemoglobin (Erythrogen) and Pluronic F-68. – Plant Cell Rep. 17: 13-16, 1997. 10.1007/s002990050343 PubMed DOI
Barbulescu D.M., Burton W.A., Salisbury P.A.: Pluronic F-68: an answer for shoot regeneration recalcitrance in microspore-derived Brassica napus embryos. – In Vitro Cell. Dev.-Pl. 47: 282-288, 2011. 10.1007/s11627-011-9353-8 DOI
Batrakova E.V., Kabanov A.V.: Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. – J. Control. Release 130: 98-106, 2008. 10.1016/j.jconrel.2008.04.013 PubMed DOI PMC
Batrakova E.V., Li S., Vinogradov S.V. et al.: Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. – J. Pharmacol. Exp. Ther. 299: 483-493, 2001. https://jpet.aspetjournals.org/content/299/2/483 PubMed
Borsuk A.M., Roddy A.B., Théroux-Rancourt G., Brodersen C.R.: Structural organization of the spongy mesophyll. – New Phytol. 234: 946-960, 2022. 10.1111/nph.17971 PubMed DOI PMC
Brunetti C., Sebastiani F., Tattini M.: Review: ABA, flavonols, and the evolvability of land plants. – Plant Sci. 280: 448-454, 2019. 10.1016/j.plantsci.2018.12.010 PubMed DOI
Cancino G.O., Gill M.I.S., Anthony P. et al.: Pluronic F-68 enhanced shoot regeneration in a potencially novel citrus rootstock. – Artif. Cell. Blood Sub. Biotechnol. 29: 317-324, 2001. 10.1081/bio-100104233 PubMed DOI
Gago J., Daloso D.M., Carriquí M. et al.: Mesophyll conductance: the leaf corridors for photosynthesis. – Biochem. Soc. T. 48: 429-439, 2020. 10.1042/BST20190312 PubMed DOI
Hill M.R., MacKrell E.J., Forsthoefel C.P. et al.: Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. – Biomacromolecules 16: 1276-1282, 2015. 10.1021/acs.biomac.5b00069 PubMed DOI
Iordan-Costache M., Lowe K.C., Davey M.R., Power J.B.: Improved micropropagation of Populus spp. by Pluronic F-68. – Plant. Growth Regul. 17: 233-239, 1995. 10.1007/BF00024731 DOI
Janská A., Pecková E., Sczepaniak B. et al.: The role of the testa during the establishment of physical dormancy in the pea seed. – Ann. Bot.-London 123: 815-829, 2019. 10.1093/aob/mcy213 PubMed DOI PMC
Jarak I., Varela C.L., da Silva E.T. et al.: Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. – Eur. J. Med. Chem. 206: 112526, 2020. 10.1016/j.ejmech.2020.112526 PubMed DOI
Jeong B.: Injectable biodegradable materials. – In: Vernon B. (ed.): Injectable Biomaterials. Pp. 323-337. Woodhead Publishing, Cambridge: 2011. 10.1533/9780857091376.3.323 DOI
Johnsson M., Silvander M., Karlsson G., Edwards K.: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. – Langmuir 15: 6314-6325, 1999. 10.1021/la990288+ DOI
Kaparakis G., Alderson P.G.: Enhancement of in vitro cell proliferation of pepper (Capsicum annuum L.) by Pluronic F-68, haemoglobin and arabinogalactan proteins. – J. Hortic. Sci. Biotech. 78: 647-649, 2003. 10.1080/14620316.2003.11511678 DOI
Khatun A., Naher Z., Mahboob S. et al.: An efficient protocol for plant regeneration from the cotyledons of kenaf (Hibiscus cannabinus L.). – Biotechnology 2: 86-93, 2003. 10.3923/biotech.2003.86.93 DOI
Khehra M., Lowe K.C., Davey M.R., Power J.B.: An improved micropropagation system for Chrysanthemum based on Pluronic F-68-supplemented media. – Plant Cell Tiss. Org. Cult. 41: 87-90, 1995. 10.1007/BF00051576 DOI
Kok A.D.-X., Mohd Yusoff N.F., Sekeli R. et al.: Pluronic F-68 improves callus proliferation of recalcitrant rice cultivar via enhanced carbon and nitrogen metabolism and nutrients uptake. – Front. Plant Sci. 12: 667434, 2021. 10.3389/fpls.2021.667434 PubMed DOI PMC
Krumova S., Petrova A., Petrova N. et al.: Seed priming with single-walled carbon nanotubes grafted with Pluronic P85 preserves the functional and structural characteristics of pea plants. – Nanomaterials 13: 1332, 2023. 10.3390/nano13081332 PubMed DOI PMC
Kumar V., Laouar M.R., Davey B.J. et al.: Pluronic F-68 stimulates growth of Solanum dulcamara in culture. – J. Exp. Bot. 43: 487-493, 1992. 10.1093/jxb/43.4.487 DOI
Kurczyńska E., Godel-Jędrychowska K., Sala K., Milewska-Hendel A.: Nanoparticles–plant interaction: What we know, where we are? – Appl. Sci. 11: 5473, 2021. 10.3390/app11125473 DOI
Kwiatkowski T.A., Rose A.L., Jung R. et al.: Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells. – Am. J. Physiol.-Cell Physiol. 318: C253-C262, 2020. 10.1152/ajpcell.00321.2019 PubMed DOI PMC
Lee S.-Y., Kim D.-I.: Stimulation of murine granulocite macrophage-colony stimulation factor production by Pluronic F-68 and polyethylene glycol in transgenic Nicotiana tabacum cell culture. – Biotechnol. Lett. 24: 1779-1783, 2002. 10.1023/A:1020609221148 DOI
Lehmeier C., Pajor R., Lundgren M.R. et al.: Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. – Plant J. 92: 981-994, 2017. 10.1111/tpj.13727 PubMed DOI PMC
Lowe K.C., Anthony P., Davey M.R. et al.: Enhanced protoplast growth at the interface between oxygenated fluorocarbon liquid and aqueous culture medium supplemented with Pluronic F-68. – Artif. Cell. Blood Sub. Biotechnol. 23: 417-422, 1995. 10.3109/10731199509117957 PubMed DOI
Metcalfe C.R., Chalk L.: Anatomy of Dicotyledons. Vol. I: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. Pp. 288. Clarendon Press, Oxford: 1979.
Nalewaja J.D., Praczyk T., Matysiak R.: Nitrogen fertilizer, oil, and surfactant adjuvants with nicosulfuron. – Weed Technol. 12: 585-589, 1998. http://www.jstor.org/stable/3989074
Nugraha D.H., Anggadiredja K., Rachmawati H.: Mini-review of poloxamer as a biocompatible polymer for advanced drug delivery. – Braz. J. Pharm. Sci. 58: e21125, 2022. 10.1590/s2175-97902022e21125 DOI
Ottenbrite R.M., Javan R.: Biological structures. – In: Bassani F., Liedl G.L., Wyder P. (ed.): Encyclopedia of Condensed Matter Physics. Pp. 99-108. Elsevier, Oxford: 2005. 10.1016/B0-12-369401-9/00698-7 DOI
Pereira A.E.S., Oliveira H.C., Fraceto L.F.: Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. – Sci. Rep.-UK 9: 7135, 2019. 10.1038/s41598-019-43494-y PubMed DOI PMC
Petrov P., Bozukov M., Tsvetanov C.B.: Innovative approach for stabilizing poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) micelles by forming nano-sized networks in the micelle. – J. Mater. Chem. 15: 1481-1486, 2005. 10.1039/B417563H DOI
Ranal M.A., de Santana D.G., Ferreira W.R., Mendes-Rodrigues C.: Calculating germination measurements and organizing spreadsheets. – Braz. J. Bot. 32: 849-855, 2009. 10.1590/S0100-84042009000400022 DOI
Schärtl W.: Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Pp. 191. Springer, Berlin-Heidelberg: 2007. 10.1007/978-3-540-71951-9 DOI
Smith W.K., Vogelmann T.C., DeLucia E.H. et al.: Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? – BioScience 47: 785-793, 1997. 10.2307/1313100 DOI
Szőllősi R., Molnár Á., Kondak S., Kolbert Z.: Dual effect of nanomaterials on germination and seedling growth: stimulation vs. phytotoxicity. – Plants-Basel 9: 1745, 2020. 10.3390/plants9121745 PubMed DOI PMC
Terashima I., Hanba Y.T., Tholen D. et al.: Leaf functional anatomy in relation to photosynthesis. – Plant Physiol. 155: 108-116, 2011. 10.1104/pp.110.165472 PubMed DOI PMC
Théroux-Rancourt G., Roddy A.B., Earles J.M. et al.: Maximum CO2 diffusion inside leaves is limited by the scaling of cell size and genome size. – Proc. R. Soc. B 288: e20203145, 2021. 10.1098/rspb.2020.3145 PubMed DOI PMC
Velikova V., Arena C., Izzo L.G. et al.: Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. – Int. J. Mol. Sci. 21: 3912, 2020. 10.3390/ijms21113912 PubMed DOI PMC
Velikova V., Petrova N., Kovács L. et al.: Single-walled carbon nanotubes modify leaf micromorphology, chloroplast ultrastructure and photosynthetic activity of pea plants. – Int. J. Mol. Sci. 22: 4878, 2021. 10.3390/ijms22094878 PubMed DOI PMC
Vinzant K., Rashid M., Khodakovskaya M.V.: Advanced applications of sustainable and biological nano-polymers in agricultural production. – Front. Plant Sci. 13: 1081165, 2023. 10.3389/fpls.2022.1081165 PubMed DOI PMC
Wang J., Segatori L., Biswal S.L.: Probing the association of triblock copolymers with supported lipid membranes using microcantilevers. – Soft Matter 10: 6417-6424, 2014. 10.1039/C4SM00928B PubMed DOI
Xin X., He Z., Hill M.R. et al.: Efficiency of biodegradable and pH-responsive polysuccinimide nanoparticles (PSI-NPs) as smart nanodelivery systems in grapefruit: in vitro cellular investigation. – Macromol. Biosci. 18: e1800159, 2018. 10.1002/mabi.201800159 PubMed DOI
Xin X., Judy J.D., Sumerlin B.B., He Z.: Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. – Environ. Chem. 17: 413-425, 2020a. 10.1071/EN19254 DOI
Xin X., Zhao F., Rho J.Y. et al.: Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. – Sci. Total Environ. 745: 141055, 2020c. 10.1016/j.scitotenv.2020.141055 PubMed DOI
Xin X., Zhao F., Zhao H. et al.: Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. – Geoderma 367: 114278, 2020b. 10.1016/j.geoderma.2020.114278 DOI
Yu J., Qiu H., Yin S. et al.: Polymeric drug delivery system based on pluronics for cancer treatment. – Molecules 26: 3610, 2021. 10.3390/molecules26123610 PubMed DOI PMC
Zhang W., Coughlin M.L., Metzger J.M. et al.: Influence of cholesterol and bilayer curvature on the interaction of PPO-PEO block copolymers with liposomes. – Langmuir 35: 7231-7241, 2019. 10.1021/acs.langmuir.9b00572 PubMed DOI PMC
Zhirnov A.E., Demina T.V., Krylova O.O. et al.: Lipid composition determines interaction of liposome membranes with Pluronic L61. – BBA-Biomembranes 1720: 73-83, 2005. 10.1016/j.bbamem.2005.11.010 PubMed DOI