Influence of reduced amounts of sulfoquinovosyl diacylglycerol on the thylakoid membranes of the diatom Thalassiosira pseudonana

. 2023 ; 61 (4) : 425-431. [epub] 20230905

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649487

Diatom thylakoids contain much higher amounts of sulfoquinovosyl diacylglycerol (SQDG) than vascular plants and the hypothesis was brought forward that this relates to their special thylakoid structure. To test this hypothesis we created knock-down mutants in Thalassiosira pseudonana that exhibited a decreased SQDG content per cell. Surprisingly, the ratio between the different lipid classes did not change, pointing to strict regulation of thylakoid lipid composition. The antenna proteins, fucoxanthin-chlorophyll proteins (FCP), were reduced and photosystem (PS) I compared to PSII was increased as judged from absorbance spectra. CD spectroscopy indicated a tighter packing of chromophores. The reduction in FCP might help to avoid diametral changes in excitation energy transfer. In contrast, the increase in PSI in the mutants might counteract the diminishment of the usually huge PSI antenna. No changes in thylakoid structure were observed since the stoichiometry between different lipid classes seems to be carefully balanced.

Zobrazit více v PubMed

Apt K.E., Grossman A.R., Kroth-Pancic P.G.: Stable nuclear transformation of the diatom Phaeodactylum tricornutum. – Mol. Gen. Genet. 252: 572-579, 1996. 10.1007/BF02172403 PubMed DOI

Barka F., Angstenberger M., Ahrendt T. et al.: Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. – BBA-Mol. Cell Biol. L. 1861: 239-248, 2016. 10.1016/j.bbalip.2015.12.023 PubMed DOI

Benning C., Beatty J.T., Prince R.C., Somerville C.R.: The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. – PNAS 90: 1561-1565, 1993. 10.1073/pnas.90.4.1561 PubMed DOI PMC

Benning C., Somerville C.R.: Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. – J. Bacteriol. 174: 6479-6487, 1992. 10.1128/jb.174.20.6479-6487.1992 PubMed DOI PMC

Büchel C.: Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. – Biochemistry 42: 13027-13034, 2003. 10.1021/bi0349468 PubMed DOI

Büchel C., Garab G.: Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (Xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. – J. Photoch. Photobio. B 37: 118-124, 1997. 10.1016/S1011-1344(96)07337-X DOI

Büchel C., Wilhelm C., Hauswirth N., Wild A.: Evidence for a lateral heterogeneity by patch-work like areas enriched in photosystem I complexes in the three thylakoid lamellae of Pleurochloris meiringensis (Xanthophyceae). – Crypt. Bot. 2: 375-386, 1992.

Essigmann B., Güler S., Narang R.A. et al.: Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. – PNAS 95: 1950-1955, 1998. 10.1073/pnas.95.4.1950 PubMed DOI PMC

Flori S., Jouneau P.-H., Bailleul B. et al.: Plastid thylakoid architecture optimizes photosynthesis in diatoms. – Nat. Commun. 8: 15885, 2017. 10.1038/ncomms15885 PubMed DOI PMC

Garab G., Kieleczawa J., Sutherland J.C. et al.: Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. – Photochem. Photobiol. 54: 273-281, 1991. 10.1111/j.1751-1097.1991.tb02016.x DOI

Goss R., Latowski D., Grzyb J. et al.: Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. – BBA-Biomembranes 1768: 67-75, 2007. 10.1016/j.bbamem.2006.06.006 PubMed DOI

Gounaris K., Barber J.: Isolation and characterization of a photosystem II reaction centre lipoprotein complex. – FEBS Lett. 188: 68-72, 1985. 10.1016/0014-5793(85)80876-0 DOI

Guillard R.R.L.: Culture of phytoplankton for feeding marine invertebrates. – In: Smith W.L., Chanley M.H. (ed.): Culture of Marine Invertebrate Animals. Pp. 29-60. Springer, Boston: 1975. 10.1007/978-1-4615-8714-9_3 DOI

Gundermann K., Büchel C.: Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. – BBA-Bioenergetics 1817: 1044-1052, 2012. 10.1016/j.bbabio.2012.03.008 PubMed DOI

Jäger S., Büchel C.: Cation-dependent changes in the thylakoid membrane appression of the diatom Thalassiosira pseudonana. – BBA-Bioenergetics 1860: 41-51, 2019. 10.1016/j.bbabio.2018.11.003 PubMed DOI

Jeffrey S.W., Humphrey G.F.: New spectrometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. – Biochem. Physiol. Pflanzen 167: 191-194, 1975. 10.1016/S0015-3796(17)30778-3 DOI

Kobayashi K.: Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. – J. Plant Res. 129: 565-580, 2016. 10.1007/s10265-016-0827-y PubMed DOI PMC

Lepetit B., Goss R., Jakob T., Wilhelm C.: Molecular dynamics of the diatom thylakoid membrane under different light conditions. – Photosynth. Res. 111: 245-257, 2012. 10.1007/s11120-011-9633-5 PubMed DOI

Lepetit B., Volke D., Gilbert M. et al.: Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. – Plant Physiol. 154: 1905-1920, 2010. 10.1104/pp.110.166454 PubMed DOI PMC

Martin P., van Mooy B.A.S., Heithoff A., Dyhrman S.T.: Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. – ISME J. 5: 1057-1060, 2011. 10.1038/ismej.2010.192 PubMed DOI PMC

Mizusawa N., Wada H.: The role of lipids in photosystem II. – BBA-Bioenergetics 1817: 194-208, 2012. 10.1016/j.bbabio.2011.04.008 PubMed DOI

Mulichak A.M., Theisen M.J., Essigmann B. et al.: Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. – PNAS 96: 13097-13102, 1999. 10.1073/pnas.96.23.13097 PubMed DOI PMC

Nagao R., Kato K., Ifuku K. et al.: Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. – Nat. Commun. 11: 2481, 2020. 10.1038/s41467-020-16324-3 PubMed DOI PMC

Nagao R., Kato K., Kumazawa M. et al.: Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. – Nat. Commun. 13: 1764, 2022. 10.1038/s41467-022-29294-5 PubMed DOI PMC

Nagy G., Szabó M., Ünnep R. et al.: Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. – Photosynth. Res. 111: 71-79, 2012. 10.1007/s11120-011-9693-6 PubMed DOI

Pi X., Zhao S., Wang W. et al.: The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. – Science 365: eaax4406, 2019. 10.1126/science.aax4406 PubMed DOI

Pick U., Gounaris K., Weiss M., Barber J.: Tightly bound sulpholipids in chloroplast CF0-CF1. – BBA-Bioenergetics 808: 415-420, 1985. 10.1016/0005-2728(85)90149-5 DOI

Pyszniak A.M., Gibbs S.P.: Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. – Protoplasma 166: 208-217, 1992. 10.1007/BF01322783 DOI

Sigrist M., Zwillenberg C., Giroud C. et al.: Sulfolipid associated with the light-harvesting complex associated with photosystem II apoproteins of Chlamydomonas reinhardii. – Plant Sci. 58: 15-23, 1988. 10.1016/0168-9452(88)90149-5 DOI

Szabó M., Lepetit B., Goss R. et al.: Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum. – Photosynth. Res. 95: 237-245, 2008. 10.1007/s11120-007-9252-3 PubMed DOI

Ünnep R., Zsiros O., Solymosi K. et al.: The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. – BBA-Bioenergetics 1837: 1572-1580, 2014. 10.1016/j.bbabio.2014.01.017 PubMed DOI

Vieler A., Wilhelm C., Goss R. et al.: The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. – Chem. Phys. Lipids 150: 143-155, 2007. 10.1016/j.chemphyslip.2007.06.224 PubMed DOI

Xu C., Pi X., Huang Y. et al.: Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. – Nat. Commun. 11: 5081, 2020. 10.1038/s41467-020-18867-x PubMed DOI PMC

Yu B., Benning C.: Anionic lipids are required for chloroplast structure and function in Arabidopsis. – Plant J. 36: 762-770, 2003. 10.1046/j.1365-313x.2003.01918.x PubMed DOI

Yu B., Xu C., Benning C.: Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. – PNAS 99: 5732-5737, 2002. 10.1073/pnas.082696499 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...