Photosynthetic efficiency of young Rhizophora mangle L. in a mangrove in southeastern Brazil
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650100
PubMed Central
PMC11558604
DOI
10.32615/ps.2022.025
PII: PS60337
Knihovny.cz E-zdroje
- Klíčová slova
- JIP test, gas exchange, photosystems, tropical region,
- Publikační typ
- časopisecké články MeSH
The study proposes to evaluate the photosynthetic plasticity of Rhizophora mangle L. in four mangrove sites distributed along with the Great Vitória Estuarine System. The variation in organic matter content, which implies the higher essential nutrient availability, contributed to better energy flux performance related to electron transport. Furthermore, salinity damaged the reaction centers (RC), since the site with the highest salinity showed changes in the number and size of active photosynthetic RC and in the specific energy flows per active RC (absorption flux, trapped energy flux, and dissipated energy flux), but the plasticity of the species in response to salt stress was confirmed by the increase of performance index for energy conservation (PITotal), net photosynthetic rate (P N), and the water-use efficiency (WUE). Also, the results showed that the luminous intensity available compromises the functionality of PSII, in turn, it increases WUE. The results indicate the effect of the chlorophyll a content, which provides more substrate for light absorption, on the electron flow and PITotal is related to P N and WUE. The study indicates the ecological plasticity of R. mangle to the conditions of the evaluated area.
Department of Biological Oceanography Rio de Janeiro State University Rio de Janeiro RJ Brazil
Department of Oceanography and Ecology Federal University of Espírito Santo Vitória ES Brazil
Zobrazit více v PubMed
Alongi D.M.: The Energetics of Mangrove Forests. Pp. 216. Springer, Dordrecht: 2009. https://link.springer.com/book/10.1007/978-1-4020-4271-3 DOI
Alongi D.M.: Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. – Environ. Sci. Policy 14: 462-470, 2011. https://www.sciencedirect.com/science/article/pii/S1462901111000177?via%3Dihub
Alongi D.M.: The impact of climate change on mangrove forests. – Curr. Clim. Change Rep. 1: 30-39, 2015. https://link.springer.com/article/10.1007/s40641-015-0002-x DOI
Alvares C.A., Stape J.L., Sentelhas P.C. et al.: Köppen’s climate classification map for Brazil. – Meteorol. Z. 22: 711-728, 2013. https://www.schweizerbart.de/papers/metz/detail/22/82078/Koppen_s_climate_classification_map_for_Brazil?af=crossref
Bai J., Ouyang H., Deng W. et al.: Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. – Geoderma 124: 181-192, 2005. https://www.sciencedirect.com/science/article/pii/S0016706104001120?via%3Dihub
Ball M.C.: Photosynthesis in mangroves. – Wetlands 6: 12-22, 1986.
Ball M.C.: Ecophysiology of mangroves. – Trees-Struct. Funct. 2: 129-142, 1988. https://link.springer.com/article/10.1007/BF00196018 DOI
Ball M.C., Taylor S.E., Terry N.: Properties of thylakoid membranes of the mangroves, Avicennia germinans and Avicennia marina, and the sugar beet, Beta vulgaris, grown under different salinity conditions. – Plant Physiol. 76: 531-535, 1984. https://academic.oup.com/plphys/article/76/2/531/6084435 PubMed PMC
Barbieri Júnior E., Rossielo R.O.P., Silva R.V.M.M. et al.: [A new chlorophyll meter to estimate chlorophyll contents in leaves of Tifton 85 bermudagrass.] – Cienc. Rural 42: 2242-2245, 2012. [In Portuguese] https://www.scielo.br/j/cr/a/JrmSPHSnVr7crDVNR8wmNQG/?lang=pt
Barr J.G., Fuentes J.D., Engel V., Zieman J.C.: Physiological responses of red mangroves to the climate in the Florida Everglades. – J. Geophys. Res. 114: G02008, 2009. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JG000843 DOI
Bompy F., Lequeue G., Imbert D., Dulormne M.: Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. – Plant Soil 380: 399-413, 2014. https://link.springer.com/article/10.1007/s11104-014-2100-2 DOI
Christian R.: Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. – Trees-Struct. Funct. 19: 596-606, 2005. https://link.springer.com/article/10.1007/s00468-005-0419-2 DOI
Cintrón G., Schaeffer-Novelli Y.: Introduccion a la ecologia del manglar. [Introduction to mangrove ecology.] Pp. 109. ROSTLAC, Montevideo: 1983. [In Spanish]
Conforto E.C., Cornélio M.L., Andreoli R.P. et al.: [Validation of arbitrary units of chlorophyll content obtained in intact rubber tree leaves.] – Revista Agro@mbiente On-line 8: 288-292, 2014. [In Portuguese] https://revista.ufrr.br/index.php/agroambiente/article/view/1737
Cunha S.R., Tognella-De-Rosa M.M.P., Costa C.S.B.: Salinity and flooding frequency as determinant of mangrove forest structure in Babitonga Bay, Santa Catarina state, southern Brazil. – J. Coast. Res. 39: 1175-1180, 2006. http://repositorio.furg.br/handle/1/3692
Espírito Santo, Decree 2625-R, November 23, 2010. Official State Gazette, Executive Branch, Vitória, ES. Pp. 3, 2010. [In Portuguese] https://ioes.dio.es.gov.br/portal/visualizacoes/diario_oficial
Estrada G.C.D., Soares M.L.G., Chaves F.O., Cavalcanti V.F.: Analysis of the structural variability of mangrove forests through the physiographic types approach. – Aquat. Bot. 111: 135-143, 2013. https://www.sciencedirect.com/science/article/pii/S0304377013000922?via%3Dihub
Falqueto A.R., Santos P.N., Fontes R.V., Silva D.M.,: Analysis of chlorophyll a fluorescence of two mangrove species of Vitória Bay (ES, Brazil) to natural variation of tide. – Rev. Biociênc. 18: 14-23, 2012. http://revistas.unitau.br/ojs/index.php/biociencias/article/viewFile/1579/1108
Falqueto A.R., Silva D.M., Fontes R.V.: Photosynthetic performance of mangroves Rhizphora mangle and Laguncularia racemosa under fields conditions. – Rev. Árvore 32: 577-582, 2008. https://www.scielo.br/j/rarv/a/GGhHJrKjFcb5FkXLffK7RSG/?lang=en
Falqueto A.R., Silva Júnior R.A., Gomes M.T.G. et al.: Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. – Sci. Hortic.-Amsterdam 224: 238-243, 2017. https://www.sciencedirect.com/science/article/pii/S0304423817303588?via%3Dihub
Farnworth E.J., Ellison A.M.: Sun-shade adaptability of the red mangrove, Rhizophora mangle (Rhizophoraceae): changes through ontogeny at several levels of biological organization. – Am. J. Bot. 83: 1131-1143, 1996. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1996.tb13893.x DOI
Feller I.C., McKee K.L., Whigham D.F., O'Neill J.P.: Nitrogen vs. phosphorus limitations across an ecotonal gradient in a mangrove. – Biogeochemistry 62: 145-175, 2003. https://link.springer.com/article/10.1023/A:1021166010892 DOI
Gonçalves J.F.C., Santos Júnior U.M.: Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance. – Braz. J. Plant Physiol. 17: 307-313, 2005. https://www.scielo.br/j/bjpp/a/H5MXDWqSZJpBcfhzsg8dp3S/?lang=en
Gonçalves J.F.C., Santos Júnior U.M., Nina Júnior A.R., Chevreuil L.R.: Energetic flux and performance index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grown under two irradiance environments. – Braz. J. Plant Physiol. 19: 171-184, 2007. https://www.scielo.br/j/bjpp/a/zZmCnPyX63YwSr5Ft5vc3WH/?lang=en
Gonçalves J.F.C., Silva C.E., Guimarães D.G., Bernardes R.S.: [Analysis of chlorophyll a fluorescence transients of young plants of Carapa guianensis and Dipteryx odorata submitted to two light environments.] – Acta Amaz. 40: 89-98, 2010. [In Portuguese] https://www.scielo.br/j/aa/a/7znt7qvbDQM6RK7gGkYg79D/abstract/?lang=pt
Gonzalez-Mendoza D., Gil F.E., Santamaría J.M., Zapata-Perez O.: Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements. – Z. Naturforsch. 939: 265-272, 2007. https://www.degruyter.com/document/doi/10.1515/znc-2007-3-418/html PubMed DOI
Haim P.G., Zoffoli B.C., Zonta E., Araújo A.P.: [Nutritional diagnosis of nitrogen in bean leaves by digital image analysis.] – Pesqui. Agropecu. Bras. 47: 1546-1549, 2012. [In Portuguese] https://www.scielo.br/j/pab/a/wV6S7RMndLm9qJfpzc6qxty/?lang=pt
Hoppe-Speer S.C.L., Adams J.B., Rajkaran A., Bailey D.: The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. – Aquat. Bot. 95: 71-76, 2011. https://www.sciencedirect.com/science/article/pii/S030437701100060X?via%3Dihub
INCAPER (Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural). Accessed: 2018. http://www.incaper.es.gov.br/
Jesus H.C., Costa E.A., Mendonça A.S.F., Zandonade E.: [Distribution and abundance of heavy metals in sediments from Vitória Island estuarine system.] – Quím. Nova 27: 378-386, 2004. [In Portuguese] https://www.scielo.br/j/qn/a/FBHhJ6vMLcKR4SbPznk8KbC/?lang=pt
Kalaji H.M., Oukarroum A., Alexandrov V.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. – Plant Physiol. Bioch. 81: 16-25, 2014. https://www.sciencedirect.com/science/article/pii/S098194281400117X?via%3Dihub PubMed
Khadka W.: Assessment of relationship between soil organic matter and macronutrients, western Nepal. – J. Biol. Pharm. Chem. Res. 3: 4-12, 2016. https://www.researchgate.net/publication/312025293_Assessment_of_Relationship_between_Soil_Organic_Matter_and_Macronutrients_Western_Nepal
Krauss K.W., Twilley R.R., Doyle T.W., Gardiner E.S.: Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. – Tree Physiol. 26: 959-968, 2006. https://academic.oup.com/treephys/article/26/7/959/1644106 PubMed
Larcher L., Boeger M.R.T., Sternberg L.S.L.O.: Gas exchange and isotopic signature of mangrove species in Southern Brazil. – Aquat. Bot. 133: 62-69, 2016. https://www.sciencedirect.com/science/article/pii/S0304377016300614?via%3Dihub
Leite T.A.: [Filtering bivalves and the regulation of estuarine eutrophication – biofiltration of the mangrove oyster, Crassostrea rhizophorae, in the northern section of the Estuarine System of Baía de Vitoria – ES, Brazil.] Pp. 212. PhD dissertation. Federal University of Espírito Santo 2018. [In Portuguese] http://repositorio.ufes.br/handle/10/9151
Lima K.O.O., Tognella M.M.P., Cunha S.R.,. Andrade H.A.: Growth models of Rhizophora mangle L. seedlings in tropical southwestern Atlantic. – Estuar. Coast. Shelf Sci. 207: 154-163, 2018. https://www.sciencedirect.com/science/article/pii/S027277141731171X?via%3Dihub
Lima T.M.J.: [Effect of flood frequency on mangrove structure in Vitória Bay, Espírito Santo, Brazil.] Pp. 84. Master thesis. Federal University of Espírito Santo; 2011. [In Portuguese] http://repositorio.ufes.br/handle/10/3161
Lopes D.M.S., Tognella M.M.P., Falqueto A.R., Soares M.L.G.: Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats. – Photosynthetica 57: 1142-1155, 2019. https://ps.ueb.cas.cz/artkey/phs-201904-0025_salinity-variation-effects-on-photosynthetic-responses-of-the-mangrove-species-rhizophora-mangle-l-growing-in.php
Lovelock C.E., Ball M.C., Choat B. et al.: Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. – Plant Cell Environ. 29: 793-802, 2006b. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01446.x PubMed DOI
Lovelock C.E., Ball M.C., Feller I.C. et al.: Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability. – Physiol. Plantarum 127: 457-464, 2006a. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2006.00723.x DOI
Lovelock C.E., Ball M.C., Martin K.C., Feller I.C.: Nutrient enrichment increases mortality of mangroves. – PLoS ONE 4: e5600, 2009. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005600 PubMed PMC
Martin K.C., Bruhn D., Lovelock C.E. et al.: Nitrogen fertilization enhances water-use efficiency in a saline environment. – Plant Cell Environ. 33: 344-357, 2010. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.02072.x PubMed DOI
McKee K.L.: Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. – Am. J. Bot. 82: 299-307, 1995. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1995.tb12634.x DOI
Medina E.: Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding. – In: Yáñez-Arancibia A., Lara-Domínguez A.L. (ed.): Ecosistemas de manglar en América Tropical. [Mangrove ecosystems in Tropical America.] Pp. 109-126. Instituto de Ecología A.C., México, UICN/ORMA, Costa Rica, NOAA/NMFS Silver Spring; 1999. [In Spanish] https://www.academia.edu/17454302/Mangrove_Physiology_the_Challenge_of_Salt_Heat_and_Light_Stress_Under_Recurrent_Flooding
Medina E., Cuevas E., Lugo A.E.: Nutrient relations of dwarf Rhizophora mangle L. mangroves on peat in eastern Puerto Rico. – Plant Ecol. 207: 13-24, 2010. https://link.springer.com/article/10.1007/s11258-009-9650-z DOI
Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. – Plant Physiol. Bioch. 48: 16-20, 2010. https://www.sciencedirect.com/science/article/pii/S0981942809002071?via%3Dihub PubMed
Meng X., Chen W.W., Wang Y.Y. et al.: Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. – PLoS ONE 16: e0246944, 2021. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246944 PubMed PMC
Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis. Pp. 155. Island Press, Washington: 2005. https://www.millenniumassessment.org/documents/document.356.aspx.pdf
Mook D.H., Hoskin C.M.: Organic determinations by ignition: Caution advised. – Estuar. Coast. Shelf Sci. 15: 697-699, 1982. https://www.sciencedirect.com/science/article/pii/0272771482900804?via%3Dihub
Naidoo G., Tuffers A.V., von Willert D.J.: Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. – Trees-Struct. Funct. 16: 140-146, 2002. https://link.springer.com/article/10.1007/s00468-001-0134-6 DOI
Neves R.C., Quaresma V.S., Bastos A.C., Silva J.C.R.: Sedimentary transport in coastal bays: case study of Vitória and Espírito Santo bays – ES – Brazil. – Braz. J. Geophys. 30: 181-189, 2012. https://sbgf.org.br/revista/index.php/rbgf/article/view/106
Parida A.K., Das A.B., Mittra B.: Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. – Trees-Struct. Funct. 18: 167-174, 2004. https://link.springer.com/article/10.1007/s00468-003-0293-8 DOI
Parida A.K., Jha B.: Salt tolerance mechanisms in mangroves: a review. – Trees-Struct. Funct. 24: 199-217, 2010. https://link.springer.com/article/10.1007/s00468-010-0417-x DOI
Pariz C.M., Andreotti M., Bergamaschine A.F. et al.: Yield, chemical composition and chlorophyll relative content of Tanzania and Mombaça grasses irrigated and fertilized with nitrogen after corn intercropping. – R. Bras. Zootec. 40: 728-738, 2011. https://www.scielo.br/j/rbz/a/Mvcq3zSncJqM7hDLWSxtcYw/?lang=en
Pascoalini S.S.: [Photosynthetic efficiency in mangroves at Baía de Vitória, ES.] Pp. 69. Master thesis. Federal University of Espírito Santo; 2014. [In Portuguese] http://repositorio.ufes.br/handle/10/1969
Pascoalini S.S., Lopes D.M.S., Falqueto A.R., Tognella M.M.P.: [Ecophysiological approach to mangroves: a review.] – Biotemas 27: 1-11, 2014. [In Portuguese] https://periodicos.ufsc.br/index.php/biotemas/article/view/2175-7925.2014v27n3p1
Pascoalini S.S., Tognella M.M.P., Lima K.O.O., Falquetto A.R.: Structural plasticity and species distribution in a periurban mangrove of Southeastern Brazil. – Sci. Res. Essays 14: 129-144, 2019. https://academicjournals.org/journal/SRE/article-full-text-pdf/00991D361958
Rebello E.R.G., Silva S.M., Silva J.F.: [Vitória-ES water balance for climate change scenarios.] Pp. 1-5. 2011. http://sbagro.org/files/biblioteca/3467.pdf Accessed: 12 October, 2018. [In Portuguese]
Redillas M.C.F.R., Strasser R.J., Jeong J.S. et al.: The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. – Plant Biotechnol. Rep. 5: 169-175, 2011. https://link.springer.com/article/10.1007/s11816-011-0170-7 DOI
Rigo D., Chacaltana J.T.A.: Computational modelling of mangrove effects on the hydrodynamics of Vitoria Bay, Espírito Santo – Brazil. – J. Coast. Res. 39: 1543-1545, 2006. http://siaiacad09.univali.br/ics2004/arquivos/323_rigo.pdf
Ru Q.M., Xiao Q., Lin P. et al.: Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove, Kandelia candel. – Russ. J. Plant Physiol. 56: 363-369, 2009. https://link.springer.com/article/10.1134/S1021443709030091 DOI
Schaeffer-Novelli Y., Cintrón-Molero G., Adaime R.R., Camargo T.M.: Variability of mangrove ecosystems along the Brazilian coast. – Estuaries 13: 204-218, 1990. https://link.springer.com/article/10.2307/1351590 DOI
Schaeffer-Novelli Y., Cintrón-Molero G., Soares M.L.G., De-Rosa T.: Brazilian mangroves. – Aquat. Ecosyst. Health Manag. 3: 561-570, 2000. https://www.sciencedirect.com/science/article/abs/pii/S146349880000052X?via%3Dihub
Schlichting A.F., Bonfim-Silva E.M., Silva M.C. et al.: Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants. – Ver. Bras. Eng. Agríc. Ambient. 19: 1148-1151, 2015. https://www.scielo.br/j/rbeaa/a/s9qnzktV7dMQMgwCWhf58JM/?lang=en
Silvestre S., Araújo S.S., Patto M.C.V., Silva J.M.: Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. – J. Integr. Plant Biol. 56: 610-621, 2014. https://onlinelibrary.wiley.com/doi/10.1111/jipb.12186 PubMed DOI
Soares M.L.G., Tognella M.M.T., Cuevas E., Medina E.: Photosynthetic capacity and intrinsic water-use efficience of Rhizophora mangle at its southernmost western Atlantic range. – Photosynthetica 53: 464-470, 2015. https://ps.ueb.cas.cz/artkey/phs-201503-0017_photosynthetic-capacity-and-intrinsic-water-use-efficiency-of-rhizophora-mangle-at-its-southernmost-western-atl.php
Sobrado M.A.: Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl. – Photosynthetica 36: 547-555, 1999. https://ps.ueb.cas.cz/artkey/phs-199904-0009_leaf-photosynthesis-of-the-mangrove-avicennia-germinans-as-affected-by-nacl.php
Sobrado M.A.: Relation of water transport to leaf gas exchange properties in three mangrove species. – Trees-Struct. Funct. 14: 258-262, 2000. https://link.springer.com/article/10.1007/s004680050011 DOI
Sobrado M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. – Photosynthetica 43: 217-221, 2005. https://ps.ueb.cas.cz/artkey/phs-200502-0007_leaf-characteristics-and-gas-exchange-of-the-mangrove-laguncularia-racemosa-as-affected-by-salinity.php
Souza I.C., Morozesk M., Duarte I.D. et al.: Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil. – Chemosphere 108: 115-124, 2014. https://www.sciencedirect.com/science/article/pii/S004565351400335X?via%3Dihub PubMed
Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. – In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London: 2000.
Strasser R.J., Stirbet A.D.: Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O–J–I–P). – Math. Comput. Simulat. 48: 3-9, 1998. https://www.sciencedirect.com/science/article/pii/S0378475498001505?via%3Dihub
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI
Swoczyna T., Łata B., Stasiak A. et al.: JIP-test in assessing sensitivity to nitrogen deficiency in two cultivars of Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. – Photosynthetica 57: 646-658, 2019. https://ps.ueb.cas.cz/artkey/phs-201902-0027_jip-test-in-assessing-sensitivity-to-nitrogen-deficiency-in-two-cultivars-of-actinidia-arguta-siebold-et-zucc.php
Teubner Júnior F.J.: [Supply of water and nutrients to the estuarine system of Baía de Vitória (ES): Subsidies for integrated environmental management.] Pp. 304. PhD dissertation. Federal University of Espírito Santo; 2016. [In Portuguese] http://repositorio.ufes.br/handle/10/9150
Teubner Júnior F.J., Lima A.T.M., Barroso G.F.: Emission rates of nitrogen and phosphorus in a tropical coastal river basin: a strategic management approach. – Environ. Monit. Assess. 190: 747, 2018. https://link.springer.com/article/10.1007/s10661-018-7101-9 PubMed DOI
Tognella M.M.P., Falqueto A.R., Espinoza H.D.C.F. et al.: Mangroves as traps for environmental damage to metals: The case study of the Fundão Dam. – Sci. Total Environ. 806: 150452, 2022. https://www.sciencedirect.com/science/article/pii/S0048969721055297?via%3Dihub PubMed
Tognella M.M.P., Soares M.L.G., Cuevas E. et al.: Heterogeneity of elemental composition and natural abundance of stables isotopes of C and N in soils and leaves of mangroves at their southernmost West Atlantic range. – Braz. J. Biol. 76: 994-1003, 2016. https://www.scielo.br/j/bjb/a/Z3KgJkyn3RdL9qmWh4K5ZCb/?lang=en PubMed
Tomlinson P.B.: The Botany of Mangroves. Pp. 419. Cambridge University Press, Cambridge: 1986.
Tóth S.Z., Schansker G., Strasser R.J.: A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. – Photosynth. Res. 93: 193-203, 2007. https://link.springer.com/article/10.1007/s11120-007-9179-8 PubMed DOI
Wong P.P., Losada I.J., Gattuso J.P. et al.: Coastal systems and low-lying areas. – In: Field C.B., Barros V.R., Dokken D.J. et al. (ed.): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 361-409. Cambridge University Press, Cambridge-New York: 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap5_FINAL.pdf
Yamane Y., Kashino Y., Koike H., Satoh K.: Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. – Photosynth. Res. 52: 57-64, 1997. https://link.springer.com/article/10.1023/A:1005884717655 DOI
Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. – BBA-Bioenergetics 1797: 1428-1238, 2010. https://www.sciencedirect.com/science/article/pii/S0005272810000484?via%3Dihub PubMed
Zamprogno G.C.: [Use of biological and environmental factors to assess levels of vulnerability to impacts arising from urban occupation in the mangroves of Baía de Vitória, ES.] Pp. 216. PhD dissertation. Federal University of Espírito Santo; 2015. [In Portuguese] http://repositorio.ufes.br/handle/10/9161
Zamprogno G.C., Tognella M.M.P., Quaresma V.S. et al.: The structural heterogeneity of an urbanised mangrove forest area in southeastern Brazil: influence of environmental factors and anthropogenic stressors. – Braz. J. Oceanogr. 64: 157-172, 2016. https://www.scielo.br/j/bjoce/a/pRrJFr9yc6P8PWrJhtC8jtK/?lang=en
Zar J.H.: Biostatistical Analysis. Pp. 662. Prentice Hall, New Jersey: 1996.