Photosynthetic efficiency of young Rhizophora mangle L. in a mangrove in southeastern Brazil

. 2022 ; 60 (3) : 337-349. [epub] 20220517

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39650100

The study proposes to evaluate the photosynthetic plasticity of Rhizophora mangle L. in four mangrove sites distributed along with the Great Vitória Estuarine System. The variation in organic matter content, which implies the higher essential nutrient availability, contributed to better energy flux performance related to electron transport. Furthermore, salinity damaged the reaction centers (RC), since the site with the highest salinity showed changes in the number and size of active photosynthetic RC and in the specific energy flows per active RC (absorption flux, trapped energy flux, and dissipated energy flux), but the plasticity of the species in response to salt stress was confirmed by the increase of performance index for energy conservation (PITotal), net photosynthetic rate (P N), and the water-use efficiency (WUE). Also, the results showed that the luminous intensity available compromises the functionality of PSII, in turn, it increases WUE. The results indicate the effect of the chlorophyll a content, which provides more substrate for light absorption, on the electron flow and PITotal is related to P N and WUE. The study indicates the ecological plasticity of R. mangle to the conditions of the evaluated area.

Zobrazit více v PubMed

Alongi D.M.: The Energetics of Mangrove Forests. Pp. 216. Springer, Dordrecht: 2009. https://link.springer.com/book/10.1007/978-1-4020-4271-3 DOI

Alongi D.M.: Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. – Environ. Sci. Policy 14: 462-470, 2011. https://www.sciencedirect.com/science/article/pii/S1462901111000177?via%3Dihub

Alongi D.M.: The impact of climate change on mangrove forests. – Curr. Clim. Change Rep. 1: 30-39, 2015. https://link.springer.com/article/10.1007/s40641-015-0002-x DOI

Alvares C.A., Stape J.L., Sentelhas P.C. et al.: Köppen’s climate classification map for Brazil. – Meteorol. Z. 22: 711-728, 2013. https://www.schweizerbart.de/papers/metz/detail/22/82078/Koppen_s_climate_classification_map_for_Brazil?af=crossref

Bai J., Ouyang H., Deng W. et al.: Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. – Geoderma 124: 181-192, 2005. https://www.sciencedirect.com/science/article/pii/S0016706104001120?via%3Dihub

Ball M.C.: Photosynthesis in mangroves. – Wetlands 6: 12-22, 1986.

Ball M.C.: Ecophysiology of mangroves. – Trees-Struct. Funct. 2: 129-142, 1988. https://link.springer.com/article/10.1007/BF00196018 DOI

Ball M.C., Taylor S.E., Terry N.: Properties of thylakoid membranes of the mangroves, Avicennia germinans and Avicennia marina, and the sugar beet, Beta vulgaris, grown under different salinity conditions. – Plant Physiol. 76: 531-535, 1984. https://academic.oup.com/plphys/article/76/2/531/6084435 PubMed PMC

Barbieri Júnior E., Rossielo R.O.P., Silva R.V.M.M. et al.: [A new chlorophyll meter to estimate chlorophyll contents in leaves of Tifton 85 bermudagrass.] – Cienc. Rural 42: 2242-2245, 2012. [In Portuguese] https://www.scielo.br/j/cr/a/JrmSPHSnVr7crDVNR8wmNQG/?lang=pt

Barr J.G., Fuentes J.D., Engel V., Zieman J.C.: Physiological responses of red mangroves to the climate in the Florida Everglades. – J. Geophys. Res. 114: G02008, 2009. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JG000843 DOI

Bompy F., Lequeue G., Imbert D., Dulormne M.: Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. – Plant Soil 380: 399-413, 2014. https://link.springer.com/article/10.1007/s11104-014-2100-2 DOI

Christian R.: Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. – Trees-Struct. Funct. 19: 596-606, 2005. https://link.springer.com/article/10.1007/s00468-005-0419-2 DOI

Cintrón G., Schaeffer-Novelli Y.: Introduccion a la ecologia del manglar. [Introduction to mangrove ecology.] Pp. 109. ROSTLAC, Montevideo: 1983. [In Spanish]

Conforto E.C., Cornélio M.L., Andreoli R.P. et al.: [Validation of arbitrary units of chlorophyll content obtained in intact rubber tree leaves.] – Revista Agro@mbiente On-line 8: 288-292, 2014. [In Portuguese] https://revista.ufrr.br/index.php/agroambiente/article/view/1737

Cunha S.R., Tognella-De-Rosa M.M.P., Costa C.S.B.: Salinity and flooding frequency as determinant of mangrove forest structure in Babitonga Bay, Santa Catarina state, southern Brazil. – J. Coast. Res. 39: 1175-1180, 2006. http://repositorio.furg.br/handle/1/3692

Espírito Santo, Decree 2625-R, November 23, 2010. Official State Gazette, Executive Branch, Vitória, ES. Pp. 3, 2010. [In Portuguese] https://ioes.dio.es.gov.br/portal/visualizacoes/diario_oficial

Estrada G.C.D., Soares M.L.G., Chaves F.O., Cavalcanti V.F.: Analysis of the structural variability of mangrove forests through the physiographic types approach. – Aquat. Bot. 111: 135-143, 2013. https://www.sciencedirect.com/science/article/pii/S0304377013000922?via%3Dihub

Falqueto A.R., Santos P.N., Fontes R.V., Silva D.M.,: Analysis of chlorophyll a fluorescence of two mangrove species of Vitória Bay (ES, Brazil) to natural variation of tide. – Rev. Biociênc. 18: 14-23, 2012. http://revistas.unitau.br/ojs/index.php/biociencias/article/viewFile/1579/1108

Falqueto A.R., Silva D.M., Fontes R.V.: Photosynthetic performance of mangroves Rhizphora mangle and Laguncularia racemosa under fields conditions. – Rev. Árvore 32: 577-582, 2008. https://www.scielo.br/j/rarv/a/GGhHJrKjFcb5FkXLffK7RSG/?lang=en

Falqueto A.R., Silva Júnior R.A., Gomes M.T.G. et al.: Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. – Sci. Hortic.-Amsterdam 224: 238-243, 2017. https://www.sciencedirect.com/science/article/pii/S0304423817303588?via%3Dihub

Farnworth E.J., Ellison A.M.: Sun-shade adaptability of the red mangrove, Rhizophora mangle (Rhizophoraceae): changes through ontogeny at several levels of biological organization. – Am. J. Bot. 83: 1131-1143, 1996. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1996.tb13893.x DOI

Feller I.C., McKee K.L., Whigham D.F., O'Neill J.P.: Nitrogen vs. phosphorus limitations across an ecotonal gradient in a mangrove. – Biogeochemistry 62: 145-175, 2003. https://link.springer.com/article/10.1023/A:1021166010892 DOI

Gonçalves J.F.C., Santos Júnior U.M.: Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance. – Braz. J. Plant Physiol. 17: 307-313, 2005. https://www.scielo.br/j/bjpp/a/H5MXDWqSZJpBcfhzsg8dp3S/?lang=en

Gonçalves J.F.C., Santos Júnior U.M., Nina Júnior A.R., Chevreuil L.R.: Energetic flux and performance index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grown under two irradiance environments. – Braz. J. Plant Physiol. 19: 171-184, 2007. https://www.scielo.br/j/bjpp/a/zZmCnPyX63YwSr5Ft5vc3WH/?lang=en

Gonçalves J.F.C., Silva C.E., Guimarães D.G., Bernardes R.S.: [Analysis of chlorophyll a fluorescence transients of young plants of Carapa guianensis and Dipteryx odorata submitted to two light environments.] – Acta Amaz. 40: 89-98, 2010. [In Portuguese] https://www.scielo.br/j/aa/a/7znt7qvbDQM6RK7gGkYg79D/abstract/?lang=pt

Gonzalez-Mendoza D., Gil F.E., Santamaría J.M., Zapata-Perez O.: Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements. – Z. Naturforsch. 939: 265-272, 2007. https://www.degruyter.com/document/doi/10.1515/znc-2007-3-418/html PubMed DOI

Haim P.G., Zoffoli B.C., Zonta E., Araújo A.P.: [Nutritional diagnosis of nitrogen in bean leaves by digital image analysis.] – Pesqui. Agropecu. Bras. 47: 1546-1549, 2012. [In Portuguese] https://www.scielo.br/j/pab/a/wV6S7RMndLm9qJfpzc6qxty/?lang=pt

Hoppe-Speer S.C.L., Adams J.B., Rajkaran A., Bailey D.: The response of the red mangrove Rhizophora mucronata Lam. to salinity and inundation in South Africa. – Aquat. Bot. 95: 71-76, 2011. https://www.sciencedirect.com/science/article/pii/S030437701100060X?via%3Dihub

INCAPER (Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural). Accessed: 2018. http://www.incaper.es.gov.br/

Jesus H.C., Costa E.A., Mendonça A.S.F., Zandonade E.: [Distribution and abundance of heavy metals in sediments from Vitória Island estuarine system.] – Quím. Nova 27: 378-386, 2004. [In Portuguese] https://www.scielo.br/j/qn/a/FBHhJ6vMLcKR4SbPznk8KbC/?lang=pt

Kalaji H.M., Oukarroum A., Alexandrov V.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. – Plant Physiol. Bioch. 81: 16-25, 2014. https://www.sciencedirect.com/science/article/pii/S098194281400117X?via%3Dihub PubMed

Khadka W.: Assessment of relationship between soil organic matter and macronutrients, western Nepal. – J. Biol. Pharm. Chem. Res. 3: 4-12, 2016. https://www.researchgate.net/publication/312025293_Assessment_of_Relationship_between_Soil_Organic_Matter_and_Macronutrients_Western_Nepal

Krauss K.W., Twilley R.R., Doyle T.W., Gardiner E.S.: Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. – Tree Physiol. 26: 959-968, 2006. https://academic.oup.com/treephys/article/26/7/959/1644106 PubMed

Larcher L., Boeger M.R.T., Sternberg L.S.L.O.: Gas exchange and isotopic signature of mangrove species in Southern Brazil. – Aquat. Bot. 133: 62-69, 2016. https://www.sciencedirect.com/science/article/pii/S0304377016300614?via%3Dihub

Leite T.A.: [Filtering bivalves and the regulation of estuarine eutrophication – biofiltration of the mangrove oyster, Crassostrea rhizophorae, in the northern section of the Estuarine System of Baía de Vitoria – ES, Brazil.] Pp. 212. PhD dissertation. Federal University of Espírito Santo 2018. [In Portuguese] http://repositorio.ufes.br/handle/10/9151

Lima K.O.O., Tognella M.M.P., Cunha S.R.,. Andrade H.A.: Growth models of Rhizophora mangle L. seedlings in tropical southwestern Atlantic. – Estuar. Coast. Shelf Sci. 207: 154-163, 2018. https://www.sciencedirect.com/science/article/pii/S027277141731171X?via%3Dihub

Lima T.M.J.: [Effect of flood frequency on mangrove structure in Vitória Bay, Espírito Santo, Brazil.] Pp. 84. Master thesis. Federal University of Espírito Santo; 2011. [In Portuguese] http://repositorio.ufes.br/handle/10/3161

Lopes D.M.S., Tognella M.M.P., Falqueto A.R., Soares M.L.G.: Salinity variation effects on photosynthetic responses of the mangrove species Rhizophora mangle L. growing in natural habitats. – Photosynthetica 57: 1142-1155, 2019. https://ps.ueb.cas.cz/artkey/phs-201904-0025_salinity-variation-effects-on-photosynthetic-responses-of-the-mangrove-species-rhizophora-mangle-l-growing-in.php

Lovelock C.E., Ball M.C., Choat B. et al.: Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. – Plant Cell Environ. 29: 793-802, 2006b. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01446.x PubMed DOI

Lovelock C.E., Ball M.C., Feller I.C. et al.: Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability. – Physiol. Plantarum 127: 457-464, 2006a. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2006.00723.x DOI

Lovelock C.E., Ball M.C., Martin K.C., Feller I.C.: Nutrient enrichment increases mortality of mangroves. – PLoS ONE 4: e5600, 2009. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005600 PubMed PMC

Martin K.C., Bruhn D., Lovelock C.E. et al.: Nitrogen fertilization enhances water-use efficiency in a saline environment. – Plant Cell Environ. 33: 344-357, 2010. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.02072.x PubMed DOI

McKee K.L.: Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. – Am. J. Bot. 82: 299-307, 1995. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1995.tb12634.x DOI

Medina E.: Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding. – In: Yáñez-Arancibia A., Lara-Domínguez A.L. (ed.): Ecosistemas de manglar en América Tropical. [Mangrove ecosystems in Tropical America.] Pp. 109-126. Instituto de Ecología A.C., México, UICN/ORMA, Costa Rica, NOAA/NMFS Silver Spring; 1999. [In Spanish] https://www.academia.edu/17454302/Mangrove_Physiology_the_Challenge_of_Salt_Heat_and_Light_Stress_Under_Recurrent_Flooding

Medina E., Cuevas E., Lugo A.E.: Nutrient relations of dwarf Rhizophora mangle L. mangroves on peat in eastern Puerto Rico. – Plant Ecol. 207: 13-24, 2010. https://link.springer.com/article/10.1007/s11258-009-9650-z DOI

Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. – Plant Physiol. Bioch. 48: 16-20, 2010. https://www.sciencedirect.com/science/article/pii/S0981942809002071?via%3Dihub PubMed

Meng X., Chen W.W., Wang Y.Y. et al.: Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. – PLoS ONE 16: e0246944, 2021. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246944 PubMed PMC

Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis. Pp. 155. Island Press, Washington: 2005. https://www.millenniumassessment.org/documents/document.356.aspx.pdf

Mook D.H., Hoskin C.M.: Organic determinations by ignition: Caution advised. – Estuar. Coast. Shelf Sci. 15: 697-699, 1982. https://www.sciencedirect.com/science/article/pii/0272771482900804?via%3Dihub

Naidoo G., Tuffers A.V., von Willert D.J.: Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. – Trees-Struct. Funct. 16: 140-146, 2002. https://link.springer.com/article/10.1007/s00468-001-0134-6 DOI

Neves R.C., Quaresma V.S., Bastos A.C., Silva J.C.R.: Sedimentary transport in coastal bays: case study of Vitória and Espírito Santo bays – ES – Brazil. – Braz. J. Geophys. 30: 181-189, 2012. https://sbgf.org.br/revista/index.php/rbgf/article/view/106

Parida A.K., Das A.B., Mittra B.: Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. – Trees-Struct. Funct. 18: 167-174, 2004. https://link.springer.com/article/10.1007/s00468-003-0293-8 DOI

Parida A.K., Jha B.: Salt tolerance mechanisms in mangroves: a review. – Trees-Struct. Funct. 24: 199-217, 2010. https://link.springer.com/article/10.1007/s00468-010-0417-x DOI

Pariz C.M., Andreotti M., Bergamaschine A.F. et al.: Yield, chemical composition and chlorophyll relative content of Tanzania and Mombaça grasses irrigated and fertilized with nitrogen after corn intercropping. – R. Bras. Zootec. 40: 728-738, 2011. https://www.scielo.br/j/rbz/a/Mvcq3zSncJqM7hDLWSxtcYw/?lang=en

Pascoalini S.S.: [Photosynthetic efficiency in mangroves at Baía de Vitória, ES.] Pp. 69. Master thesis. Federal University of Espírito Santo; 2014. [In Portuguese] http://repositorio.ufes.br/handle/10/1969

Pascoalini S.S., Lopes D.M.S., Falqueto A.R., Tognella M.M.P.: [Ecophysiological approach to mangroves: a review.] – Biotemas 27: 1-11, 2014. [In Portuguese] https://periodicos.ufsc.br/index.php/biotemas/article/view/2175-7925.2014v27n3p1

Pascoalini S.S., Tognella M.M.P., Lima K.O.O., Falquetto A.R.: Structural plasticity and species distribution in a periurban mangrove of Southeastern Brazil. – Sci. Res. Essays 14: 129-144, 2019. https://academicjournals.org/journal/SRE/article-full-text-pdf/00991D361958

Rebello E.R.G., Silva S.M., Silva J.F.: [Vitória-ES water balance for climate change scenarios.] Pp. 1-5. 2011. http://sbagro.org/files/biblioteca/3467.pdf Accessed: 12 October, 2018. [In Portuguese]

Redillas M.C.F.R., Strasser R.J., Jeong J.S. et al.: The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. – Plant Biotechnol. Rep. 5: 169-175, 2011. https://link.springer.com/article/10.1007/s11816-011-0170-7 DOI

Rigo D., Chacaltana J.T.A.: Computational modelling of mangrove effects on the hydrodynamics of Vitoria Bay, Espírito Santo – Brazil. – J. Coast. Res. 39: 1543-1545, 2006. http://siaiacad09.univali.br/ics2004/arquivos/323_rigo.pdf

Ru Q.M., Xiao Q., Lin P. et al.: Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove, Kandelia candel. – Russ. J. Plant Physiol. 56: 363-369, 2009. https://link.springer.com/article/10.1134/S1021443709030091 DOI

Schaeffer-Novelli Y., Cintrón-Molero G., Adaime R.R., Camargo T.M.: Variability of mangrove ecosystems along the Brazilian coast. – Estuaries 13: 204-218, 1990. https://link.springer.com/article/10.2307/1351590 DOI

Schaeffer-Novelli Y., Cintrón-Molero G., Soares M.L.G., De-Rosa T.: Brazilian mangroves. – Aquat. Ecosyst. Health Manag. 3: 561-570, 2000. https://www.sciencedirect.com/science/article/abs/pii/S146349880000052X?via%3Dihub

Schlichting A.F., Bonfim-Silva E.M., Silva M.C. et al.: Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants. – Ver. Bras. Eng. Agríc. Ambient. 19: 1148-1151, 2015. https://www.scielo.br/j/rbeaa/a/s9qnzktV7dMQMgwCWhf58JM/?lang=en

Silvestre S., Araújo S.S., Patto M.C.V., Silva J.M.: Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. – J. Integr. Plant Biol. 56: 610-621, 2014. https://onlinelibrary.wiley.com/doi/10.1111/jipb.12186 PubMed DOI

Soares M.L.G., Tognella M.M.T., Cuevas E., Medina E.: Photosynthetic capacity and intrinsic water-use efficience of Rhizophora mangle at its southernmost western Atlantic range. – Photosynthetica 53: 464-470, 2015. https://ps.ueb.cas.cz/artkey/phs-201503-0017_photosynthetic-capacity-and-intrinsic-water-use-efficiency-of-rhizophora-mangle-at-its-southernmost-western-atl.php

Sobrado M.A.: Leaf photosynthesis of the mangrove Avicennia germinans as affected by NaCl. – Photosynthetica 36: 547-555, 1999. https://ps.ueb.cas.cz/artkey/phs-199904-0009_leaf-photosynthesis-of-the-mangrove-avicennia-germinans-as-affected-by-nacl.php

Sobrado M.A.: Relation of water transport to leaf gas exchange properties in three mangrove species. – Trees-Struct. Funct. 14: 258-262, 2000. https://link.springer.com/article/10.1007/s004680050011 DOI

Sobrado M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. – Photosynthetica 43: 217-221, 2005. https://ps.ueb.cas.cz/artkey/phs-200502-0007_leaf-characteristics-and-gas-exchange-of-the-mangrove-laguncularia-racemosa-as-affected-by-salinity.php

Souza I.C., Morozesk M., Duarte I.D. et al.: Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil. – Chemosphere 108: 115-124, 2014. https://www.sciencedirect.com/science/article/pii/S004565351400335X?via%3Dihub PubMed

Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. – In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London: 2000.

Strasser R.J., Stirbet A.D.: Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O–J–I–P). – Math. Comput. Simulat. 48: 3-9, 1998. https://www.sciencedirect.com/science/article/pii/S0378475498001505?via%3Dihub

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI

Swoczyna T., Łata B., Stasiak A. et al.: JIP-test in assessing sensitivity to nitrogen deficiency in two cultivars of Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. – Photosynthetica 57: 646-658, 2019. https://ps.ueb.cas.cz/artkey/phs-201902-0027_jip-test-in-assessing-sensitivity-to-nitrogen-deficiency-in-two-cultivars-of-actinidia-arguta-siebold-et-zucc.php

Teubner Júnior F.J.: [Supply of water and nutrients to the estuarine system of Baía de Vitória (ES): Subsidies for integrated environmental management.] Pp. 304. PhD dissertation. Federal University of Espírito Santo; 2016. [In Portuguese] http://repositorio.ufes.br/handle/10/9150

Teubner Júnior F.J., Lima A.T.M., Barroso G.F.: Emission rates of nitrogen and phosphorus in a tropical coastal river basin: a strategic management approach. – Environ. Monit. Assess. 190: 747, 2018. https://link.springer.com/article/10.1007/s10661-018-7101-9 PubMed DOI

Tognella M.M.P., Falqueto A.R., Espinoza H.D.C.F. et al.: Mangroves as traps for environmental damage to metals: The case study of the Fundão Dam. – Sci. Total Environ. 806: 150452, 2022. https://www.sciencedirect.com/science/article/pii/S0048969721055297?via%3Dihub PubMed

Tognella M.M.P., Soares M.L.G., Cuevas E. et al.: Heterogeneity of elemental composition and natural abundance of stables isotopes of C and N in soils and leaves of mangroves at their southernmost West Atlantic range. – Braz. J. Biol. 76: 994-1003, 2016. https://www.scielo.br/j/bjb/a/Z3KgJkyn3RdL9qmWh4K5ZCb/?lang=en PubMed

Tomlinson P.B.: The Botany of Mangroves. Pp. 419. Cambridge University Press, Cambridge: 1986.

Tóth S.Z., Schansker G., Strasser R.J.: A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. – Photosynth. Res. 93: 193-203, 2007. https://link.springer.com/article/10.1007/s11120-007-9179-8 PubMed DOI

Wong P.P., Losada I.J., Gattuso J.P. et al.: Coastal systems and low-lying areas. – In: Field C.B., Barros V.R., Dokken D.J. et al. (ed.): Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 361-409. Cambridge University Press, Cambridge-New York: 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap5_FINAL.pdf

Yamane Y., Kashino Y., Koike H., Satoh K.: Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. – Photosynth. Res. 52: 57-64, 1997. https://link.springer.com/article/10.1023/A:1005884717655 DOI

Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. – BBA-Bioenergetics 1797: 1428-1238, 2010. https://www.sciencedirect.com/science/article/pii/S0005272810000484?via%3Dihub PubMed

Zamprogno G.C.: [Use of biological and environmental factors to assess levels of vulnerability to impacts arising from urban occupation in the mangroves of Baía de Vitória, ES.] Pp. 216. PhD dissertation. Federal University of Espírito Santo; 2015. [In Portuguese] http://repositorio.ufes.br/handle/10/9161

Zamprogno G.C., Tognella M.M.P., Quaresma V.S. et al.: The structural heterogeneity of an urbanised mangrove forest area in southeastern Brazil: influence of environmental factors and anthropogenic stressors. – Braz. J. Oceanogr. 64: 157-172, 2016. https://www.scielo.br/j/bjoce/a/pRrJFr9yc6P8PWrJhtC8jtK/?lang=en

Zar J.H.: Biostatistical Analysis. Pp. 662. Prentice Hall, New Jersey: 1996.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...