Speed of light-induced stomatal movement is not correlated to initial or final stomatal conductance in rice

. 2022 ; 60 (3) : 350-359. [epub] 20220517

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39650102

In nature, plants are often confronted with wide variations in light intensity, which may cause a massive carbon loss and water waste. Here, we investigated the response of photosynthetic rate and stomatal conductance to fluctuating light among ten rice genotypes and their influence on plant acclimation and intrinsic water-use efficiency (WUEi). Significant differences were observed in photosynthetic induction and stomatal kinetics across rice genotypes. However, no significant correlation was observed between steady-state and non-steady-state gas exchange. Genotypes with a greater range of steady-state and faster response rate of the gas exchange showed stronger adaptability to fluctuating light. Higher stomatal conductance during the initial phase of induction had little effect on the photosynthetic rate but markedly decreased the plant WUEi. Clarification of the mechanism influencing the dynamic gas exchange and synchronization between photosynthesis and stomatal conductance under fluctuating light may contribute to the improvement of photosynthesis and water-use efficiency in the future.

Zobrazit více v PubMed

Acevedo-Siaca L.G., Coe R., Quick W.P., Long S.P.: Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. – J. Exp. Bot. 72: 1282-1294, 2021. https://academic.oup.com/jxb/article/72/4/1282/5960139 PubMed PMC

Acevedo-Siaca L.G., Coe R., Wang Y. at al.: Variation in photosynthetic induction between rice accessions and its potential for improving productivity. – New Phytol. 227: 1097-1108, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16454 PubMed DOI PMC

Adachi S., Tanaka Y., Miyagi A. et al.: High-yielding rice Takanari has superior photosynthetic response under fluctuating light to a commercial rice Koshihikari. – J. Exp. Bot. 70: 5287-5297, 2019. https://academic.oup.com/jxb/article/70/19/5287/5525377 PubMed PMC

Auchincloss L., Easlon H.M., Levine D. et al.: Pre-dawn stomatal opening does not substantially enhance early-morning photosynthesis in Helianthus annuus. – Plant Cell Environ. 37: 1364-1370, 2014. https://onlinelibrary.wiley.com/doi/10.1111/pce.12241 PubMed DOI

Caird M.A., Richards J.H., Donovan L.A.: Nighttime stomatal conductance and transpiration in C3 and C4 plants. – Plant Physiol. 143: 4-10, 2007. https://academic.oup.com/plphys/article/143/1/4/6106731 PubMed PMC

Chazdon R.L., Pearcy R.W.: Photosynthetic responses to light variation in rainforest species. II. Carbon gain and photosynthetic efficiency during lightflecks. – Oecologia 69: 524-531, 1986. https://link.springer.com/article/10.1007/BF00410358 PubMed DOI

Dawson T.E., Burgess S.S.O., Tu K.P. et al.: Nighttime transpiration in woody plants from contrasting ecosystems. – Tree Physiol. 27: 561-575, 2007. https://academic.oup.com/treephys/article/27/4/561/1666111 PubMed

De Souza A.P., Wang Y., Orr D.J. et al.: Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. – New Phytol. 225: 2498-2512, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16142 PubMed DOI PMC

Drake P.L., Froend R.H., Franks P.J.: Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. – J. Exp. Bot. 64: 495-505, 2013. https://academic.oup.com/jxb/article/64/2/495/531702 PubMed PMC

Durand M., Brendel O., Buré C., Le Thiec D.: Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impacts on the whole-plant transpiration efficiency of poplar genotypes. – New Phytol. 222: 1789-1802, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15710 PubMed DOI

Elliott-Kingston C., Haworth M., Yearsley J.M. et al.: Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. – Front. Plant Sci. 7: 1253, 2016. https://www.frontiersin.org/articles/10.3389/fpls.2016.01253/full PubMed DOI PMC

Eyland D., van Wesemael J., Lawson T., Carpentier S.: The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. – Plant Physiol. 186: 998-1012, 2021. https://academic.oup.com/plphys/article/186/2/998/6162873 PubMed PMC

Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. – Ann. Rev. Plant Physio. 33: 317-345, 1982. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533 DOI

Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. – P. Natl. Acad. Sci. USA 106: 10343-10347, 2009. PubMed PMC

Franks P.J., Drake P.L., Beerling D.J.: Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. – Plant Cell Environ. 32: 1737-1748, 2009. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.002031.x PubMed DOI

Franks P.J., Farquhar G.D.: The mechanical diversity of stomata and its significance in gas-exchange control. – Plant Physiol. 143: 78-87, 2007. https://academic.oup.com/plphys/article/143/1/78/6106846 PubMed PMC

Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. – Nature 424: 901-908, 2003. https://www.nature.com/articles/nature01843 PubMed

Kaiser E., Kromdijk J., Harbinson J. et al.: Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. – Ann. Bot.-London 119: 191-205, 2017. https://academic.oup.com/aob/article/119/1/191/2738798 PubMed PMC

Kaiser E., Morales A., Harbinson J. et al.: Dynamic photosynthesis in different environmental conditions. – J. Exp. Bot. 66: 2415-2426, 2015. https://academic.oup.com/jxb/article/66/9/2415/676023 PubMed

Kaiser E., Morales A., Harbinson J. et al.: Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. – Sci. Rep.-UK 6: 31252, 2016. https://www.nature.com/articles/srep31252 PubMed PMC

Kanemura T., Homma K., Ohsumi A. et al.: Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. – Photosynth. Res. 94: 23-30, 2007. https://link.springer.com/article/10.1007/s11120-007-9208-7 PubMed DOI

Kübarsepp L., Laanisto L., Niinemets Ü. et al.: Are stomata in ferns and allies sluggish? Stomatal responses to CO2, humidity and light and their scaling with size and density. – New Phytol. 225: 183-195, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16159 PubMed DOI

Lawson T., Blatt M.R.: Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. – Plant Physiol. 164: 1556-1570, 2014. https://academic.oup.com/plphys/article/164/4/1556/6112797 PubMed PMC

Lawson T., Kramer D.M., Raines C.A.: Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. – Curr. Opin. Plant Biol. 23: 215-220, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0958166911007555?via%3Dihub PubMed

Lawson T., Matthews J.: Guard cell metabolism and stomatal function. – Annu. Rev. Plant Biol. 71: 273-302, 2020. https://www.annualreviews.org/doi/10.1146/annurev-arplant-050718-100251 PubMed DOI

Lawson T., Simkin A.J., Kelly G., Granot D.: Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. – New Phytol. 203: 1064-1081, 2014. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.12945 PubMed DOI

Lawson T., Vialet-Chabrand S.: Speedy stomata, photosynthesis and plant water use efficiency. – New Phytol. 221: 93-98, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15330 PubMed DOI

Lawson T., von Caemmerer S., Baroli I.: Photosynthesis and stomatal behaviour. – In: Lüttge U., Beyschlag W., Büdel B., Francis D. (ed.): Progress in Botany. Vol. 72. Pp. 265-304. Springer, Berlin-Heidelberg: 2010. https://link.springer.com/chapter/10.1007/978-3-642-13145-5_11 DOI

Long S.P., Zhu X.G., Naidu S.L., Ort D.R.: Can improvement in photosynthesis increase crop yields? – Plant Cell Environ. 29: 315-330, 2006. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01493.x PubMed DOI

Matthews J.S.A., Vialet-Chabrand S., Lawson T.: Role of blue and red light in stomatal dynamic behaviour. – J. Exp. Bot. 71: 2253-2269, 2020. https://academic.oup.com/jxb/article/71/7/2253/5686167 PubMed PMC

McAusland L., Vialet-Chabrand S., Davey P. et al.: Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. – New Phytol. 211: 1209-1220, 2016. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14000 PubMed DOI PMC

Ooba M., Takahashi H.: Effect of asymmetric stomatal response on gas-exchange dynamics. – Ecol. Model. 164: 65-82, 2003. https://www.sciencedirect.com/science/article/abs/pii/S0304380003000127?via%3Dihub

Pearcy R.W., Roden J.S., Gamon J.A.: Sunfleck dynamics in relation to canopy structure in a soybean (Glycine max (L.) Merr.) canopy. – Agr. Forest Meteorol. 52: 359-372, 1990. https://www.sciencedirect.com/science/article/abs/pii/016819239090092K?via%3Dihub

Peguero-Pina J.J., Sisó S., Flexas J. et al.: Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. – New Phytol. 214: 585-596, 2017. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14406 PubMed DOI

Poorter H., Fiorani F., Pieruschka R. et al.: Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. – New Phytol. 212: 838-855, 2016. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14243 PubMed DOI

Raven J.A.: Speedy small stomata? – J. Exp. Bot. 65: 1415-1424, 2014. https://academic.oup.com/jxb/article/65/6/1415/588799 PubMed

Santelia D., Lawson T.: Rethinking guard cell metabolism. – Plant Physiol. 172: 1371-1392, 2016. https://academic.oup.com/plphys/article/172/3/1371/6115829 PubMed PMC

Scafaro A.P., Yamori W., Carmo-Silva A.E. et al.: Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis). – Physiol. Plantarum 146: 99-109, 2012. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2012.01597.x PubMed DOI

Soleh M.A., Tanaka Y., Nomoto Y. et al.: Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr]. – Plant Cell Environ. 39: 685-693, 2016. https://onlinelibrary.wiley.com/doi/10.1111/pce.12674 PubMed DOI

Urban O., Košvancová M., Marek M.V., Lichtenthaler H.K.: Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. – Tree Physiol. 27: 1207-1215, 2007. https://academic.oup.com/treephys/article/27/8/1207/1702485 PubMed

Vialet-Chabrand S., Matthews J.S.A., Brendel O. et al.: Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana. – Plant Sci. 251: 65-74, 2016. https://www.sciencedirect.com/science/article/pii/S0168945216301352?via%3Dihub PubMed PMC

Vialet-Chabrand S., Matthews J.S.A., Simkin A.J. et al.: Importance of fluctuations in light on plant photosynthetic acclimation. – Plant Physiol. 173: 2163-2179, 2017a. https://academic.oup.com/plphys/article/173/4/2163/6116047 PubMed PMC

Vialet-Chabrand S.R.M., Matthews J.S.A., McAusland L. et al.: Temporal dynamics of stomatal behavior: Modeling and implications for photosynthesis and water use. – Plant Physiol. 174: 603-613, 2017b. https://academic.oup.com/plphys/article/174/2/603/6117516 PubMed PMC

Vico G., Manzoni S., Palmroth S., Katul G.: Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. – New Phytol. 192: 640-652, 2011. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03847.x PubMed DOI

Woodrow I.E., Mott K.A.: Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. – Funct. Plant Biol. 16: 487-500, 1989. https://www.publish.csiro.au/fp/PP9890487

Wu A., Hammer G.L., Doherty A. et al.: Quantifying impacts of enhancing photosynthesis on crop yield. – Nat. Plants 5: 380-388, 2019. https://www.nature.com/articles/s41477-019-0398-8 PubMed

Xiong D., Douthe C., Flexas J.: Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. – Plant Cell Environ. 41: 436-450, 2018. https://onlinelibrary.wiley.com/doi/10.1111/pce.13111 PubMed DOI

Xiong D., Flexas J.: From one side to two sides: the effects of stomatal distribution on photosynthesis. – New Phytol. 228: 1754-1766, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16801 PubMed DOI

Xiong D., Yu T., Zhang T. et al.: Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. – J. Exp. Bot. 66: 741-748, 2015. https://academic.oup.com/jxb/article/66/3/741/478896 PubMed PMC

Yamori W., Kondo E., Sugiura D. et al.: Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. – Plant Cell Environ. 39: 80-87, 2016. https://onlinelibrary.wiley.com/doi/10.1111/pce.12594 PubMed DOI

Yamori W., Nagai T., Makino A.: The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. – Plant Cell Environ. 34: 764-777, 2011. 10.1111/j.1365-3040.2011.02280.x PubMed DOI

Zhang Q., Peng S., Li Y.: Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza. – J. Exp. Bot. 70: 5259-5269, 2019. https://academic.oup.com/jxb/article/70/19/5259/5506730 PubMed PMC

Zhang Y., Kaiser E., Zhang Y. et al.: Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum). – Environ. Exp. Bot. 149: 109-119, 2018.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...