Comparative PSII photochemistry of quinoa and maize under mild to severe drought stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650103
PubMed Central
PMC11558597
DOI
10.32615/ps.2022.022
PII: PS60362
Knihovny.cz E-zdroje
- Klíčová slova
- drought, leaf water potential, membrane leakage, performance index, photosynthesis, quantum yield,
- Publikační typ
- časopisecké články MeSH
Quinoa has been identified as a climate-resilient crop that can overcome unfavorable conditions. This study explores the photochemical efficiency of quinoa compared to maize subjected to drought stress. The JIP-test was used to assess the photochemical efficiency of both crops. Proline content, leaf water potential, and membrane leakage were also determined. The maximum photochemical efficiency (Fv/Fm) did not change for quinoa and maize under moderate stress. However, severe drought conditions resulted in a decline in Fv/Fm in maize but not quinoa. Furthermore, the PSII performance index (PIABS,total) declined steadily in maize soon after the onset of drought stress. The decline in the PIABS,total values for quinoa was only observed after a period of severe drought stress. Membrane leakage was also more prevalent in the maize plants, while quinoa had higher proline contents. This study concluded that both quinoa and maize maintained PSII structure and function under moderate drought conditions. However, only quinoa maintained PSII structure and function under severe drought conditions.
Zobrazit více v PubMed
Albert K.R., Mikkelsen T.N., Michelsen A. et al.: Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. – J. Plant Physiol. 168: 1550-1561, 2011. https://www.sciencedirect.com/science/article/pii/S0176161711001507?via%3Dihub PubMed
Allakhverdiev S.I., Feyziev Y.M., Ahmed A. et al.: Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. – J. Photoch. Photobio. B 34: 149-157, 1996. https://www.sciencedirect.com/science/article/pii/1011134495072764?via%3Dihub PubMed
Anjum S.A., Xie X., Wang L. et al.: Morphological, physiological and biochemical responses of plants to drought stress. – Afr. J. Agr. Res. 6: 2026-2032, 2011. https://academicjournals.org/article/article1380900919_Anjum%2520et%2520al.pdf
Aro E.-M., Virgin I., Andersson B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. – BBA-Bioenergetics 1143: 113-134, 1993. https://www.sciencedirect.com/science/article/pii/0005272893901342?via%3Dihub PubMed
Athanasiou K., Dyson B.C., Webster R.E., Johnson G.N.: Dynamic acclimation of photosynthesis increases plant fitness in changing environments. – Plant Physiol. 152: 366-373, 2010. https://academic.oup.com/plphys/article/152/1/366/6108436 PubMed PMC
Azurita-Silva A., Jacobsen S.-E., Razzaghi F. et al.: Quinoa drought responses and adaptation. – In: Bazile D., Bertero D., Nieto C. (ed.): State of the Art Report of Quinoa in the World in 2013. FAO and CIRAD, Rome: 2015. https://repositorio.uchile.cl/bitstream/handle/2250/130689/Quinoa-drought-responses-and-adaptation.pdf?sequence=1&isAllowed=y
Badr A., Brüggermann W.: Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. – Photosynthetica 58: 638-645, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0044_special-issue-in-honour-of-prof-reto-j-strasser-8211-comparative-analysis-of-drought-stress-response-of-ma.php
Banks J.M.: Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. – Environ. Exp. Bot. 155: 118-127, 2018. https://www.sciencedirect.com/science/article/pii/S0098847218305768?via%3Dihub
Bano H., Habib-ur-Rehman A., Zafar Z.U. et al.: Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. – Physiol. Plantarum 172: 1244-1254, 2021. https://onlinelibrary.wiley.com/doi/10.1111/ppl.13327 PubMed DOI
Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. – Aust. J. Biol. Sci. 15: 413-428, 1962. https://www.publish.csiro.au/bi/bi9620413
Busotti F., Desotgiu R., Cascio C. et al.: Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. – Environ. Exp. Bot. 73: 19-30, 2011. https://www.sciencedirect.com/science/article/abs/pii/S0098847210002200?via%3Dihub
Carillo P., Gibon Y.: PROTOCOL: Extraction and determination of proline. – Prometheus Wiki, 2011. https://www.researchgate.net/file.PostFileLoader.html?id=5806feea48954cd50d5799c5&assetKey=AS%3A418768011448320%401476853482022
Chen Y.E., Liu W.J., Su Y.Q. et al.: Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. – Physiol. Plantarum 158: 225-235, 2016. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12438 PubMed DOI
De Ronde J.A., Cress W.A., Krüger G.H.J. et al.: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. – J. Plant Physiol. 161: 1211-1224, 2004. https://www.sciencedirect.com/science/article/pii/S0176161704000392?via%3Dihub PubMed
Digrado A., Bachy A., Mozaffar A. et al.: Long-term measurements of chlorophyll a fluorescence using the JIP-test show that combined abiotic stresses influence the photosynthetic performance of the perennial ryegrass (Lolium perenne) in a managed temperate grassland. – Physiol. Plantarum 161: 355-371, 2017. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12594 PubMed DOI
Furlan A.L., Bianucci E., Giordano W. et al.: Proline metabolic dynamics and implications in drought tolerance of peanut plants. – Plant Physiol. Bioch. 151: 566-578, 2020. https://www.sciencedirect.com/science/article/pii/S0981942820301790?via%3Dihub PubMed
González J.A., Eisa S.S.S., Hussin S.A.E.S., Prado F.E.: Quinoa: An incan crop to face global changes in agriculture. – In: Murphy K., Matanguihan J. (ed.): Quinoa: Improvement and Sustainable Production. Pp. 1-18. John Wiley & Sons, Inc., Hoboken: 2015. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118628041 DOI
Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? – Front. Plant Sci. 10: 174, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00174/full PubMed DOI PMC
Guo P., Baum M., Varshney R.K. et al.: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. – Euphytica 163: 203-214, 2008. https://link.springer.com/article/10.1007/s10681-007-9629-6 DOI
Gupta R.: The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. – Plant Signal. Behav. 15: 1824721, 2020. https://www.tandfonline.com/doi/full/10.1080/15592324.2020.1824721 PubMed DOI PMC
Hagen S.F., Solhaug K.A., Bengtsson G.B. et al.: Chlorophyll fluorescence as a tool for non-destructive estimation of anthocyanins and total flavonoids in apples. – Postharvest Biol. Tec. 41: 156-163, 2006. https://www.sciencedirect.com/science/article/pii/S0925521406001098?via%3Dihub
Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments: a review. – Plant Signal. Behav. 7: 1456-1466, 2012. https://www.tandfonline.com/doi/full/10.4161/psb.21949 PubMed DOI PMC
Henmi T., Miyao M., Yamamoto Y.: Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. – Plant Cell Physiol. 45: 243-250, 2004. https://academic.oup.com/pcp/article/45/2/243/1814991 PubMed
Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. – Acta Physiol. Plant. 38: 102, 2016. https://link.springer.com/article/10.1007/s11738-016-2113-y DOI
Kalaji H.M., Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? – Environ. Exp. Bot. 152: 149-157, 2018. https://www.sciencedirect.com/science/article/pii/S0098847217302721?via%3Dihub
Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017. https://link.springer.com/article/10.1007/s11120-016-0318-y PubMed DOI PMC
Krieger-Liszkay A., Shimakawa G.: Regulation of the generation of reactive oxygen species during photosynthetic electron transport. – Biochem. Soc. T. 50: 1025-1034, 2022. https://portlandpress.com/biochemsoctrans/article-abstract/50/2/1025/231172/Regulation-of-the-generation-of-reactive-oxygen?redirectedFrom=fulltext PubMed
Lauriano J.A., Ramalho J.C., Lidon F.C., do Céu Matos M.: Mechanisms of energy dissipation in peanut under water stress. – Photosynthetica 44: 404-410, 2006. https://ps.ueb.cas.cz/artkey/phs-200603-0013_mechanisms-of-energy-dissipation-in-peanut-under-water-stress.php
Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. – Funct. Plant Biol. 33: 9-30, 2006. https://www.publish.csiro.au/fp/FP05095 PubMed
Liu J., Guo Y.Y., Bai Y.W. et al.: Effects of drought stress on the photosynthesis in maize. – Russ. J. Plant Physiol. 65: 849-856, 2018. https://link.springer.com/article/10.1134/S1021443718060092 DOI
Logan B.A., Demmig-Adams B., Adams W.W. III, Bilger W.: Context, quantification, and measurement guide for non-photochemical quenching of chlorophyll fluorescence. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Pp. 187-201. Springer, Dordrecht: 2014. https://link.springer.com/chapter/10.1007/978-94-017-9032-1_7 DOI
Longenberger P.S., Smith C.W., Duke S.E., McMichael B.L.: Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. – Euphytica 166: 25-33, 2009. https://link.springer.com/article/10.1007/s10681-008-9820-4 DOI
Majeran W., Friso G., Ponnala L. et al.: Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. – Plant Cell 22: 3509-3524, 2010. https://academic.oup.com/plcell/article/22/11/3509/6097037 PubMed PMC
Malan C.: Comparing the photochemical potential of quinoa to maize under water stress conditions. PhD Thesis. Pp. 135. North-West University, Potchefstroom: 2020. https://repository.nwu.ac.za/bitstream/handle/10394/34782/Malan%20C%2022775366.pdf?sequence=1&isAllowed=y
Mathur S., Agrawal D., Jajoo A.: Photosynthesis: Response to high temperature stress. – J. Photoch. Photobio. B 137: 116-126, 2014. https://www.sciencedirect.com/science/article/pii/S1011134414000190?via%3Dihub PubMed
Meena M., Divyanshu K., Kumar S. et al.: Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. – Heliyon 5: e02952, 2019. https://www.sciencedirect.com/science/article/pii/S2405844019366113?via%3Dihub PubMed PMC
Meng L.L., Song J.F., Wen J. et al.: Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. – Photosynthetica 54: 414-421, 2016. https://ps.ueb.cas.cz/artkey/phs-201603-0012_effects-of-drought-stress-on-fluorescence-characteristics-of-photosystem-ii-in-leaves-of-plectranthus-scutellar.php
Oukarroum A., El Madidi S., Strasser R.J.: Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): A chlorophyll a fluorescence study. – Plant Biosyst. 146: 1037-1043, 2012. https://www.tandfonline.com/doi/abs/10.1080/11263504.2012.697493 DOI
Pearcy R.W., Ehleringer J.: Comparative ecophysiology of C3 and C4 plants. – Plant Cell Environ. 7: 1-13, 1984. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1984.tb01194.x DOI
Petrova N., Paunov M., Stoichev S. et al.: Thylakoid membrane reorganization, induced by growth light intensity, affects the plants susceptibility to drought stress. – Photosynthetica 58: 369-378, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0019_special-issue-in-honour-of-prof-reto-j-strasser-8211-thylakoid-membrane-reorganization-induced-by-growth.php
Pšidová E., Živčák M., Stojnić S. et al.: Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). – Environ. Exp. Bot. 152: 97-106, 2018. https://www.sciencedirect.com/science/article/pii/S0098847217303076?via%3Dihub
Qi J., Song C.-P., Wang B. et al.: Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. – J. Integr. Plant Biol. 60: 805-826, 2018. https://onlinelibrary.wiley.com/doi/10.1111/jipb.12654 PubMed DOI
Rane J., Babar R., Kumar M. et al.: Desiccation tolerance of Photosystem II in dryland fruit crops. – Sci. Hortic.-Amsterdam 288: 110295, 2021. https://www.sciencedirect.com/science/article/pii/S0304423821004027?via%3Dihub
Rejeb K.B., Abdelly C., Savouré A.: How reactive oxygen species and proline face stress together. – Plant Physiol. Bioch. 80: 278-284, 2014. https://www.sciencedirect.com/science/article/pii/S0981942814001417?via%3Dihub PubMed
Rodrigues J., Inzé D., Nelissen H., Saibo N.J.M.: Source–sink regulation in crops under water deficit. – Trends Plant Sci. 24: 652-663, 2019. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(19)30101-3 PubMed
Semida W.M., Abdelkhalik A., Rady M.O.A. et al.: Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. – Sci. Hortic.-Amsterdam 272: 109580, 2020. https://www.sciencedirect.com/science/article/pii/S0304423820304088?via%3Dihub
Sharma A., Kumar V., Shahzad B. et al.: Photosynthetic response of plants under different abiotic stresses: A review. – J. Plant Growth Regul. 39: 509-531, 2019. https://link.springer.com/article/10.1007/s00344-019-10018-x DOI
Slama I.S., Abdelly C., Bouchereau A. et al.: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. – Ann. Bot.-London 115: 433-447, 2015. https://academic.oup.com/aob/article/115/3/433/304998 PubMed PMC
Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. – Environ. Exp. Bot. 51: 45-56, 2004. https://www.sciencedirect.com/science/article/pii/S0098847203000595?via%3Dihub
Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica 56: 86-104, 2018. https://link.springer.com/article/10.1007/s11099-018-0770-3 DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. https://link.springer.com/chapter/10.1007/978-1-4020-3218-9_12 DOI
Strasser R.J., Tsimilli-Michael M., Dangre D., Rai M.: Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica. – In: Varma A., Oelmüller R. (ed.): Advanced Techniques in Soil Microbiology. Soil Biology. Vol. 11. Pp. 319-341. Springer, Berlin-Heidelberg: 2007. https://link.springer.com/chapter/10.1007/978-3-540-70865-0_21 DOI
Sullivan C.Y.: Techniques for measuring plant drought stress. – In: Larson K.L., Eastin J.D. (ed.): Drought Injury and Resistance in Crops. Pp. 1-18. CSSA Special Publications, Madison: 1971. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cssaspecpub2.c1 DOI
Wang Z., Li G., Sun H. et al.: Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. – Biol. Open 7: bio035279, 2018. https://journals.biologists.com/bio/article/7/11/bio035279/2013/Effects-of-drought-stress-on-photosynthesis-and PubMed PMC
Xu Z., Zhou G., Shimizu H.: Plant responses to drought and rewatering. – Plant Signal Behav. 5: 649-654, 2010. https://www.tandfonline.com/doi/full/10.4161/psb.5.6.11398 PubMed DOI PMC
Yusuf M.A., Kumar D., Rajwanshi E. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. – BBA-Bioenergetics 1797: 1428-1438, 2010. https://www.sciencedirect.com/science/article/pii/S0005272810000484?via%3Dihub PubMed
Zhou R., Kan X., Chen J. et al.: Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. – Environ. Exp. Bot. 158: 51-62, 2019. https://www.sciencedirect.com/science/article/pii/S0098847218312164?via%3Dihub
Zushi K., Kajiwara S., Matsuzoe N.: Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. – Sci. Hortic.-Amsterdam 148: 39-46, 2012. https://www.sciencedirect.com/science/article/pii/S0304423812004578?via%3Dihub