Biochemical, gas exchange, and chlorophyll fluorescence analysis of maize genotypes under drought stress reveals important insights into their interaction and homeostasis
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650104
PubMed Central
PMC11558602
DOI
10.32615/ps.2022.024
PII: PS60376
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, drought, gas exchange, interaction, maize,
- Publikační typ
- časopisecké články MeSH
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
Centre for Mountain Futures Kunming Institute of Botany 650201 Kunming Yunnan China
College of Agriculture and Ecological Engineering Hexi University Zhangye 734000 Gansu China
Department of Genetics and Plant Breeding Banaras Hindu University 221005 Varanasi India
East and Central Asia Regional Office World Agroforestry 650201 Kunming Yunnan China
Zobrazit více v PubMed
Abid M., Ali S., Qi L.K. et al.: Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). – Sci. Rep.-UK 8: 4615, 2018. https://www.nature.com/articles/s41598-018-21441-7 PubMed PMC
Allorent G., Tokutsu R., Roach T. et al.: A dual strategy to cope with high light in Chlamydomonas reinhardtii. – Plant Cell 25: 545-557, 2013. https://academic.oup.com/plcell/article/25/2/545/6096672 PubMed PMC
Anjum S.A., Ashraf U., Tanveer M. et al.: Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. – Front. Plant Sci. 8: 69, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00069/full PubMed DOI PMC
Apel K., Hirt H.: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. – Annu. Rev. Plant Biol. 55: 373-399, 2004. https://www.annualreviews.org/doi/10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Asada K.: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. – Annu. Rev. Plant Biol. 50: 601-639, 1999. https://www.annualreviews.org/doi/10.1146/annurev.arplant.50.1.601 PubMed DOI
Asada K., Takahashi M.: Production and scavenging of active oxygen in photosynthesis. – In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition. Topics in Photosynthesis. Vol. 9. Pp. 227-287. Elsevier, Amsterdam: 1987.
Assefa F., Ayalew D.: Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. – Cogent Food Agric. 5: 1641902, 2019. https://www.tandfonline.com/doi/full/10.1080/23311932.2019.1641902 DOI
Avramova V., AbdElgawad H., Vasileva I. et al.: High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. – Front. Plant Sci. 8: 84, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00084/full PubMed DOI PMC
Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Barber J., Nield J., Morris E.P. et al.: The structure, function and dynamics of photosystem two. – Physiol. Plantarum 100: 817-827, 1997. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1997.tb00008.x DOI
Bhaskara G.B., Nguyen T.T., Verslues P.E.: Unique drought resistance functions of the Highly ABA-induced clade A protein phosphatase 2Cs. – Plant Physiol. 160: 379-395, 2012. https://academic.oup.com/plphys/article/160/1/379/6109775 PubMed PMC
Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. – Photosynth. Res. 25: 173-185, 1990. https://link.springer.com/article/10.1007/BF00033159 PubMed DOI
Boo Y.C., Jung J.: Water deficit-induced oxidative stress and antioxidative defenses in rice plants. – J. Plant Physiol. 155: 255-261, 1999. https://www.sciencedirect.com/science/article/abs/pii/S0176161799800169?via%3Dihub
Butler W.L.: Energy distribution in the photochemical apparatus of photosynthesis. – Annu. Rev. Plant Physiol. 29: 345-378, 1978. https://www.annualreviews.org/doi/10.1146/annurev.pp.29.060178.002021 DOI
Cheeseman J.M.: Hydrogen peroxide concentrations in leaves under natural conditions. – J. Exp. Bot. 57: 2435-2444, 2006. PubMed
Chen X., Mo X., Hu S. et al.: Relationship between fluorescence yield and photochemical yield under water stress and intermediate light conditions. – J. Exp. Bot. 70: 301-313, 2019. https://academic.oup.com/jxb/article/70/1/301/5123702 PubMed PMC
Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. – Trends Plant Sci. 5: 187-188, 2000. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01625-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138500016253%3Fshowall%3Dtrue
Cossins E.A., Chen L.: Folates and one-carbon metabolism in plants and fungi. – Phytochemistry 45: 437-452, 1997. https://www.sciencedirect.com/science/article/abs/pii/S0031942296008333?via%3Dihub PubMed
Cousins A.B., Adam N.R., Wall G.W. et al.: Photosystem II energy use, non-photochemical quenching and the xanthophyll cycle in Sorghum bicolor grown under drought and free-air CO2 enrichment (FACE) conditions. – Plant Cell Environ. 25: 1551-1559, 2002. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2002.00935.x DOI
Cruz de Carvalho M.H.: Drought stress and reactive oxygen species: Production, scavenging and signaling. – Plant Signal. Behav. 3: 156-165, 2008. https://www.tandfonline.com/doi/full/10.4161/psb.3.3.5536 PubMed DOI PMC
Dat J., Vandenabeele S., Vranová E. et al.: Dual action of the active oxygen species during plant stress responses. – Cell Mol. Life Sci 57: 779-795, 2000. https://link.springer.com/article/10.1007/s000180050041 PubMed DOI PMC
Davies W.J., Zhang J.: Root signals and the regulation of growth and development of plants in drying soil. – Annu. Rev. Plant Phys. 42: 55-76, 1991. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.42.060191.000415?msclkid=2ed0926bd05811ec9a4e0094d8dbf110 DOI
Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A.: Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. – J. Exp. Bot. 32: 93-101, 1981. https://academic.oup.com/jxb/article-abstract/32/1/93/746156?redirectedFrom=fulltext
Dos Santos C.M., Endres L., Ferreira V.M. et al.: Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas. – An. Acad. Bras. Ciênc. 89: 3015-3029, 2017. https://www.scielo.br/j/aabc/a/FKYg69R73PqZXCSNtyyqRLS/?lang=en PubMed
Edelman M., Mattoo A.K.: D1-protein dynamics in photosystem II: The lingering enigma. – Photosynth. Res. 98: 609-620, 2008. https://link.springer.com/article/10.1007/s11120-008-9342-x PubMed DOI
Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. – Agron. Sustain. Dev. 29: 185-212, 2009. https://link.springer.com/article/10.1051/agro:2008021 DOI
Farré I., van Oijen M., Leffelaar P.A., Faci J.M.: Analysis of maize growth for different irrigation strategies in northeastern Spain. – Eur. J. Agron. 12: 225-238, 2000. https://www.sciencedirect.com/science/article/abs/pii/S1161030100000514?via%3Dihub
Fisher M., Abate T., Lunduka R.W. et al.: Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. – Climatic Change 133: 283-299, 2015. https://link.springer.com/article/10.1007/s10584-015-1459-2?msclkid=dac0fcebd05911ec8c7c83f5aa877dc4 DOI
Fracheboud Y., Leipner J.: The application of chlorophyll fluorescence to study light, temperature, and drought stress. – In: DeEll J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125-150. Springer, Boston: 2003. https://link.springer.com/chapter/10.1007/978-1-4615-0415-3_4?msclkid=48f9df35d05b11eca2a5670050e99ace DOI
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. https://www.sciencedirect.com/science/article/abs/pii/S0304416589800169?via%3Dihub
Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant Physiol. Bioch. 48: 909-930, 2010. https://www.sciencedirect.com/science/article/abs/pii/S0981942810001798?via%3Dihub PubMed
Grossiord C., Buckley T.N., Cernusak L.A. et al.: Plant responses to rising vapor pressure deficit. – New Phytol. 226: 1550-1566, 2020. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16485 PubMed DOI
Huang W., Zhang S.B., Cao K.F.: Evidence for leaf fold to remedy the deficiency of physiological photoprotection for photosystem II. – Photosynth. Res. 110: 185-191, 2012. https://link.springer.com/article/10.1007/s11120-011-9717-2?msclkid=b0cd3020d05f11ec83b8d60ca9f71df5 PubMed DOI
Hura T., Hura K., Grzesiak M., Rzepka A.: Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. – Acta Physiol. Plant. 29: 103, 2007. https://link.springer.com/article/10.1007/s11738-006-0013-2?msclkid=d781cba9d05f11ec882d82c2dce7e053 DOI
Jakob B., Heber U.: Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. – Plant Cell Physiol. 37: 629-635, 1996. https://academic.oup.com/pcp/article/37/5/629/1818480
Ji K., Wang Y., Sun W. et al.: Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. – J. Plant Physiol. 169: 336-344, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0176161711004548?via%3Dihub PubMed
Kasajima I., Ebana K., Yamamoto T. Uchimiya H.: Molecular distinction in genetic regulation of nonphotochemical quenching in rice. – P. Natl. Acad. Sci. USA 108: 13835-13840, 2011. https://www.pnas.org/doi/full/10.1073/pnas.1104809108 PubMed DOI PMC
Khorobrykh S., Havurinne V., Mattila H., Tyystjärvi E.: Oxygen and ROS in photosynthesis. – Plants-Basel 9: 91, 2020. https://www.mdpi.com/2223-7747/9/1/91 PubMed PMC
Kirkham M.B.: Field capacity, wilting point, available water, and the non-limiting water range. – In: Kirkham M.B. (ed.): Principles of Soil and Plant Water Relations. Pp. 101-115. Academic Press, San Diego: 2005. https://www.sciencedirect.com/science/article/pii/B9780124097513500086?via%3Dihub
Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. – Annu. Rev. Plant Phys. 42: 313-349, 1991. https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.42.060191.001525?msclkid=b95d9b3bd06111ecbde97033fa280c92 DOI
Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. – Arch. Biochem. Biophys. 125: 189-198, 1968. https://www.sciencedirect.com/science/article/abs/pii/0003986168906541?via%3Dihub PubMed
Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. – Ann. Bot.-London 89: 871-885, 2002. https://academic.oup.com/aob/article/89/7/871/151155 PubMed PMC
Martin B., Ruiz-Torres N.A.: Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). – Plant Physiol. 100: 733-739, 1992. https://academic.oup.com/plphys/article/100/2/733/6085981 PubMed PMC
Mattos L.M., Moretti C.L.: Oxidative stress in plants under drought conditions and the role of different enzymes. – Enzym. Eng. 5: 136, 2015. https://www.longdom.org/open-access/oxidative-stress-in-plants-under-drought-conditions-and-the-role-ofdifferent-enzymes-2329-6674-1000136.pdf
Mehler A.H.: Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other Hill reagents. – Arch. Biochem. Biophys. 33: 65-77, 1951. https://www.sciencedirect.com/science/article/pii/0003986151900823?via%3Dihub PubMed
Mishra N.P., Ghanotakis D.F.: Exposure of photosystem II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. – BBA-Bioenergetics 1187: 296-300, 1994. https://www.sciencedirect.com/science/article/abs/pii/0005272894900035?via%3Dihub
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F.: Reactive oxygen gene network of plants. – Trends Plant Sci. 9: 490-498, 2004. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(04)00204-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138504002043%3Fshowall%3Dtrue PubMed
Miyao M., Ikeuchi M., Yamamoto N., Ono T.: Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: implications for the mechanism of degradation of the D1 protein under illumination. – Biochemistry 34: 10019-10026, 1995. https://pubs.acs.org/doi/abs/10.1021/bi00031a025 PubMed DOI
Murata N. (ed.): Research in Photosynthesis. Pp. 3515. Springer, Dordrecht: 1992. https://link.springer.com/book/9780792320739?msclkid=89f2e5ecd06411ec82bdf57108a9db51
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. https://academic.oup.com/jxb/article/64/13/3983/436509 PubMed
Noctor G., Foyer C.H.: Ascorbate and glutathione: Keeping active oxygen under control. – Annu. Rev. Plant Biol. 49: 249-279, 1998. https://www.annualreviews.org/doi/10.1146/annurev.arplant.49.1.249 PubMed DOI
Noctor G., Mhamdi A., Foyer C.H.: The roles of reactive oxygen metabolism in drought: Not so cut and dried. – Plant Physiol. 164: 1636-1648, 2014. https://academic.oup.com/plphys/article/164/4/1636/6112785 PubMed PMC
Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. – Physiol. Plantarum 137: 188-199, 2009. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2009.01273.x PubMed DOI
Pinheiro C., Chaves M.M.: Photosynthesis and drought: Can we make metabolic connections from available data? – J. Exp. Bot. 62: 869-882, 2011. https://academic.oup.com/jxb/article/62/3/869/478813 PubMed
Polle A.: Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. – Plant Physiol. 126: 445-462, 2001. https://academic.oup.com/plphys/article/126/1/445/6110010 PubMed PMC
Porcel R., Ruiz-Lozano J.M.: Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. – J. Exp. Bot. 55: 1743-1750, 2004. https://academic.oup.com/jxb/article/55/403/1743/531390 PubMed
Praba M.L., Cairns J.E., Babu R.C., Lafitte H.R.: Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. – J. Agron. Crop Sci. 195: 30-46, 2009. https://onlinelibrary.wiley.com/doi/10.1111/j.1439-037X.2008.00341.x DOI
Richter C., Schweizer M.: Oxidative stress in mitochondria. – In: Scandalios J.G. (ed.): Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Pp. 169-200. Cold Spring Harbor Laboratory Press, Plainview: 1997.
Sage R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective. – Photosynth. Res. 39: 351-368, 1994. https://link.springer.com/article/10.1007/BF00014591 PubMed DOI
Sgherri C.L.M., Pinzino C., Navari-Izzo F.: Chemical changes and O2·– production in thylakoid membranes under water stress. – Physiol. Plantarum 87: 211-216, 1993. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1993.tb00144.x DOI
Sharma P., Jha A.B., Dubey R.S., Pessarakli M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. – J. Bot. 2012: 217037, 2012. https://www.hindawi.com/journals/jb/2012/217037/
Shirke P.A., Pathre U.V.: Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. – J. Exp. Bot. 55: 2111-2120, 2004. https://academic.oup.com/jxb/article/55/405/2111/464574 PubMed
Sinclair T.R., Bennett J.M., Muchow R.C.: Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize. – Crop Sci. 30: 690-693, 1990. https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1990.0011183X003000030043x DOI
Singh A., Kumar A., Yadav S. et al.: Reactive oxygen species-mediated signaling during abiotic stress. – Plant Gene 18: 100173, 2019. https://www.sciencedirect.com/science/article/abs/pii/S235240731930006X?via%3Dihub
Singh S.K., Reddy K.R.: Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. – J. Photoch. Photobio. B 105: 40-50, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134411001588?via%3Dihub PubMed
Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation. – New Phytol. 125: 27-58, 1993. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1993.tb03863.x PubMed DOI
Smirnoff N., Arnaud D.: Hydrogen peroxide metabolism and functions in plants. – New Phytol. 221: 1197-1214, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15488 PubMed DOI
Toscano S., Farieri E., Ferrante A., Romano D.: Physiological and biochemical responses in two ornamental shrubs to drought stress. – Front. Plant Sci. 7: 645, 2016. https://www.frontiersin.org/articles/10.3389/fpls.2016.00645/full PubMed DOI PMC
Tsai Y.C., Chen K.C., Cheng T.S. et al.: Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. – BMC Plant Biol. 19: 403, 2019. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-019-1983-8 PubMed DOI PMC
Tsukagoshi H., Busch W., Benfey P.N.: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. – Cell 143: 606-616, 2010. https://www.cell.com/cell/fulltext/S0092-8674(10)01190-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867410011906%3Fshowall%3Dtrue PubMed
von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. – Planta 153: 376-387, 1981. https://link.springer.com/article/10.1007/BF00384257 PubMed DOI
Veihmeyer F.J., Hendrickson A.H.: The moisture equivalent as a measure of the field capacity of soils. – Soil Sci. 32: 181-194, 1931. https://journals.lww.com/soilsci/Citation/1931/09000/THE_MOISTURE_EQUIVALENT_AS_A_MEASURE_OF_THE_FIELD.3.aspx
Zhang J., Davies W.J.: Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. – J. Exp. Bot. 38: 2015-2023, 1987. https://academic.oup.com/jxb/article-abstract/38/12/2015/529858?redirectedFrom=fulltext
Zhang R.H., Zhang X.H., Camberato J.J., Xue J.Q.: Photosynthetic performance of maize hybrids to drought stress. – Russ. J. Plant Physiol. 62: 788-796, 2015. https://link.springer.com/article/10.1134/S1021443715060187 DOI
Zipper S.C., Qiu J., Kucharik C.J.: Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. – Environ. Res. Lett. 11: 094021, 2016. https://iopscience.iop.org/article/10.1088/1748-9326/11/9/094021 DOI