Photosynthetic performance of walnut leaves during the occurrence of leaf scorch
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650129
PubMed Central
PMC11515811
DOI
10.32615/ps.2023.003
PII: PS61013
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, daily variation, gas exchange, seasonal changes, stomatal regulation,
- Publikační typ
- časopisecké články MeSH
To clarify the effect of leaf scorch on walnut leaf photosynthesis, photosynthetic parameters were measured in Juglans regia 'Wen185' and 'Xinxin2' symptom trees (WS, XS) and symptomless trees (WH, XH). At the early stage of infection and under the low-grade leaf scorch, WS showed significantly lower net photosynthetic rate (P N), stomatal limitation (Ls), and higher intercellular CO2 concentration (C i) than those of WH. However, at the mid to late stage of infection and under the high-grade leaf scorch, WS showed significantly lower P N, C i, the maximal quantum yield of PSII photochemistry and higher Ls, minimal fluorescence yield of the dark-adapted state, nonphotochemical quenching than those of WH, which would occur once Juglans regia 'Xinxin2' was infected. The above results indicated the effect of leaf scorch on walnut leaf photosynthesis was related to the walnut varieties and the duration and severity of the disease. Under the influence of leaf scorch, the decline in photosynthesis of Juglans regia 'Wen185' leaves changed from stomatal to nonstomatal restriction, while Juglans regia 'Xinxin2' leaves showed always nonstomatal restriction.
Zobrazit více v PubMed
Aguadé D., Poyatos R., Gómez M. et al..: The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). – Tree Physiol. 35: 229-242, 2015. 10.1093/treephys/tpv005 PubMed DOI
Alves A.A., Guimarães L.M.S., Chaves A.R.M. et al..: Leaf gas exchange and chlorophyll a fluorescence of Eucalyptus urophylla in response to Puccinia psidii infection. – Acta Physiol. Plant. 33: 1831-1839, 2011. 10.1007/s11738-011-0722-z DOI
Chen B., Wang K.R., Li S.K. et al..: [The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves.] – Trans. Chin. Soc. Agric. Eng. 27: 86-93, 2011. [In Chinese] 10.3969/j.issn.1002-6819.2011.09.017 DOI
Dallagnol L.J., Rodrigues F.A., Martins S.C.V. et al..: Alterations on rice leaf physiology during infection by Bipolaris oryzae. – Australas. Plant Path. 40: 360-365, 2011. 10.1007/s13313-011-0048-8 DOI
Demmig-Adams B., Adams III W.W., Barker D.H. et al..: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. – Physiol. Plantarum 98: 253-264, 1996. 10.1034/j.1399-3054.1996.980206.x DOI
Dinis L.-T., Peixoto F., Zhang C.H. et al..: Physiological and biochemical changes in resistant and sensitive chestnut (Castanea) plantlets after inoculation with Phytophthora cinnamomi. – Physiol. Mol. Plant Pathol. 75: 146-156, 2011. 10.1016/j.pmpp.2011.04.003 DOI
Farquhar G.D., Sharkey T. D.: Stomatal conductance and photosynthesis. – Ann. Rev. Plant Physio. 33: 317-345, 1982. 10.1146/annurev.pp.33.060182.001533 DOI
Feng Y., Hou X., Ma J. et al..: [Effects of turnip mosaic virus infection on photosynthetic and fluorescence characteristics of non-heading Chinese cabbage.] – Jiangsu J. Agric. Sci. 26: 508-511, 2010. [In Chinese] 10.3969/j.issn.1000-4440.2010.03.011 DOI
Gao G.L., Feng Q., Zhang X.Y. et al..: [An overview of stomatal and non-stomatal limitations to photosynthesis of plants.] – Arid Zone Res. 35: 929-937, 2018. [In Chinese] 10.13866/j.azr.2018.04.22 DOI
Gruber B.R., Kruger E.L., McManus P.S.: Effects of cherry leaf spot on photosynthesis in tart cherry ‘Montmorency’ foliage. – Phytopathology 102: 656-661, 2012. 10.1094/PHYTO-12-11-0334 PubMed DOI
Hajiboland R., Cheraghvareh L., Poschenrieder C.: Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. – J. Plant Nutr. 40: 1661-1676, 2017. 10.1080/01904167.2017.1310887 DOI
Hao S.Q., Liu S.Q., Zhang Z.K. et al..: [Characteristics of chlorophyll metabolism and chlorophyll fluorescence in the silvered leaf of summer squash.] – Acta Hortic. Sin. 36: 879-884, 2009. [In Chinese] 10.16420/j.issn.0513-353x.2009.06.019 DOI
Hao S.Q., Liu S.Q., Zhang Z.K. et al..: [Effects of squash silver leaf on photosynthetic characteristics and chloroplast ultrastructure of the summer squash leaves.] – Acta Hortic. Sin. 37: 109-113, 2010. [In Chinese] 10.16420/j.issn.0513-353x.2010.01.017 DOI
Hubbard R.M., Rhoades C.C., Elder K., Negron J.: Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. – Forest Ecol. Manag. 289: 312-317, 2013. 10.1016/j.foreco.2012.09.028 DOI
Kyseláková H., Prokopová J., Nauš J. et al..: Photosynthetic alterations of pea leaves infected systemically by pea enation mosaic virus: A coordinated decrease in efficiencies of CO2 assimilation and photosystem II photochemistry. – Plant Physiol. Bioch. 49: 1279-1289, 2011. 10.1016/j.plaphy.2011.08.006 PubMed DOI
Li Y., Pu H.S., Ma X.P. et al..: [Study on characteristics and causation of walnut withered leaf symptom.] – Xinjiang Agric. Sci. 59: 1475-1481, 2022. [In Chinese] 10.6048/j.issn.1001-4330.2022.06.019 DOI
Liang Z., Zhang J.F., Jing R. et al..: [Control technology of physiological disease of walnut ‘leaf margin scorched’.] – Xinjiang Agric. Sci. Technol. 1: 19-20, 2014. [In Chinese] 10.3969/j.issn.1007-3574.2014.01.011 DOI
Lu J.J., Chen Y.X.: [Effects of SMV-infection on photosynthesis of soybean.] – Plant Physiol. Commun. 28: 104-106, 1992. [In Chinese] 10.13592/j.cnki.ppj.1992.02.006 DOI
Luo D., Shi Y.J., Song F.H. et al..: [Effects of salt stress on growth, photosynthetic and fluorescence characteristics, and root architecture of Corylus heterophylla × C. avellan seedlings.] – Chin. J. Appl. Ecol. 30: 3376-3384, 2019. [In Chinese] 10.13287/j.1001-9332.201910.001 PubMed DOI
Manter D.K.: Energy dissipation and photoinhibition in Douglas-fir needles with a fungal-mediated reduction in photosynthetic rates. – J. Phytopathol. 150: 674-679, 2002. 10.1046/j.1439-0434.2002.00801.x DOI
Melotto M., Underwood W., Koczan J. et al..: Plant stomata function in innate immunity against bacterial invasion. – Cell 126: 969-980, 2006. 10.1016/j.cell.2006.06.054 PubMed DOI
Moriondo M., Orlandini S., Giuntoli A., Bindi M.: The effect of downy and powdery mildew on grapevine (Vitis vinifera L.) leaf gas exchange. – J. Phytopathol. 153: 350-357, 2005. 10.1111/j.1439-0434.2005.00984.x DOI
Muhammad I., Shalmani A., Ali M. et al..: Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. – Front. Plant Sci. 11: 615942, 2021. 10.3389/fpls.2020.615942 PubMed DOI PMC
Retuerto R., Fernández-Lema B., Obeso J.R.: Changes in photochemical efficiency in response to herbivory and experimental defoliation in the dioecious tree Ilex aquifolium. – Int. J. Plant Sci. 167: 279-289, 2006. 10.1086/498919 DOI
Rohrs-Richey J.K., Mulder C.P., Winton L.M., Stanosz G.: Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. – New Phytol. 189: 295-307, 2011. 10.1111/j.1469-8137.2010.03472.x PubMed DOI
Roloff I., Scherm H., van Iersel M.W. et al..: Photosynthesis of blueberry leaves as affected by Septoria leaf spot and abiotic leaf damage. – Plant Disease 88: 397-401, 2004. 10.1094/PDIS.2004.88.4.397 PubMed DOI
Stone J.K., Hood I.A., Watt M.S., Kerrigan J.L.: Distribution of Swiss needle cast in New Zealand in relation to winter temperature. – Australas. Plant Path. 36: 445-454, 2007. 10.1071/AP07049 DOI
Wang D.P., Zeng M., Zhu J., Li D.G.: [Effects of Apatococcus lobatus parasitization on leaf photosynthesis characteristics of orange (Citrus cv. Olinda).] – Chin. J. Appl. Ecol. 17: 1141-1144, 2006. [In Chinese] http://www.cjae.net/CN/abstract/abstract1038.shtml PubMed
Xu D.Q.: [Non-uniform stomatal closure and non-stomatal limitation of photosynthesis.] – Plant Physiol. Commun. 31: 246-252, 1995. [In Chinese] 10.13592/j.cnki.ppj.1995.04.002 DOI
Xu J.H.: [Green prevention and control technology of main diseases and pests of walnut in Awati County.] – Rural Sci. Technol. 10: 40-42, 2017. [In Chinese] https://d.wanfangdata.com.cn/periodical/nckj201710020
Yang Z.X., Ding Y.F., Zhang X.Q. et al..: [Impacts of Alternaria alternata stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances.] – Acta Ecol. Sin. 35: 4146-4154, 2015. [In Chinese] 10.5846/stxb201308212124 DOI
Zhang J.F., Liang Z., Zou Y.X. et al..: [Study on causation of walnut withered leaf symptom in Southern Xinjiang.] – Xinjiang Agric. Sci. 49: 1261-1265, 2012. [In Chinese] 10.6048/j.issn.1001-4330.2012.07.014 DOI
Zhao D.L., Glynn N.C., Glaz B. et al..: Orange rust effects on leaf photosynthesis and related characters of sugarcane. – Plant Disease 95: 640-647, 2011. 10.1094/PDIS-10-10-0762 PubMed DOI
Zheng G.H.: [Effect of anthracnose infection on the content of H2O2 and chlorophyll fluorescence in loquat leaves.] – J. Fujian Agric. For. Univ. 30: 353-356, 2001. [In Chinese] http://qikan.cqvip.com/Qikan/Article/Detail?id=6047087