Heterocapsa cf. bohaiensis (dinoflagellate): identification and response to nickel and iron stress revealed through chlorophyll a fluorescence
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650634
PubMed Central
PMC11609768
DOI
10.32615/ps.2023.038
PII: PS62027
Knihovny.cz E-zdroje
- Klíčová slova
- PAM fluorometry, dinoflagellate, metal stress, metallic trace elements, microalgae, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Metal toxicity in marine ecosystems is a growing issue owing to terrestrial runoff and anthropogenic pollution. Heterocapsa cf. bohaiensis, a newly isolated dinoflagellate from New Caledonia, was cultivated in photobioreactors operating continuously with high concentrations of nickel (1.70 10-5M) (Ni2+) and/or iron (1.79 10-5M) (Fe2+) and their photosynthetic efficiency was assessed. The photosynthetic measurements indicated that H. cf. bohaiensis was tolerant to Ni2+ but sensitive to Fe2+ high concentrations. In the presence of Fe2+, maximum quantum efficiency and maximal relative electron transport rate decreased from 0.62 to 0.47 and from 156 to 102, respectively. The JIP-tests suggested a reduction of the photosynthesis in response to Fe2+ due to a disruption in the electron transport chain rather than a defect in the light absorption and trapping capacity which were on the contrary enhanced by Fe2+. These results bring new knowledge on the impact of nickel and iron on microalgae photosynthetic pathways.
ADECAL Technopole 1 Bis Rue Berthelot 98846 Nouméa New Caledonia
CRESICA 98851 Nouméa New Caledonia
Ifremer Littoral LERBO Place de la Croix Concarneau F 29900 France
ISEA EA7484 Campus de Nouville University of New Caledonia 98851 Nouméa New Caledonia
Zobrazit více v PubMed
Adamski J.M., Peters J.A., Danieloski R., Bacarin M.A.: Excess iron-induced changes in the photosynthetic characteristics of sweet potato. – J. Plant Physiol. 168: 2056-2062, 2011. 10.1016/j.jplph.2011.06.003 PubMed DOI
Ambatsian P., Fernex F., Bernat M. et al.: High metal inputs to closed seas: the New Caledonian lagoon. – J. Geochem. Explor. 59: 59-74, 1997. 10.1016/S0375-6742(96)00020-9 DOI
Antal T.K., Matorin D.N., Ilyash L.V. et al.: Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. – Photosynth. Res. 102: 67-76, 2009. 10.1007/s11120-009-9491-6 PubMed DOI
Bird E.C.F., Dubois J.-P., Iltis J.A.: The Impacts of Opencast Mining on the Rivers and Coasts of New Caledonia. Pp. 53. United Nations University, Tokyo: 1984. https://digitallibrary.un.org/record/42529
Biscéré T., Lorrain A., Rodolfo-Metalpa R. et al.: Nickel and ocean warming affect scleractinian coral growth. – Mar. Pollut. Bull. 120: 250-258, 2017. 10.1016/j.marpolbul.2017.05.025 PubMed DOI
Biscéré T., Rodolfo-Metalpa R., Lorrain A. et al.: Responses of two scleractinian corals to cobalt pollution and ocean acidification. – PLoS ONE 10: e0122898, 2015. 10.1371/journal.pone.0122898 PubMed DOI PMC
Boisvert S., Joly D., Leclerc S. et al.: Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. – BioMetals 20: 879-889, 2007. 10.1007/s10534-007-9081-z PubMed DOI
Chatterjee C., Gopal R., Dube B.K.: Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). – Sci. Hortic.-Amsterdam 108: 1-6, 2006. 10.1016/j.scienta.2006.01.004 DOI
Chénais B.: Algae and microalgae and their bioactive molecules for human health. – Molecules 26: 1185, 2021. 10.3390/molecules26041185 PubMed DOI PMC
Choi H., Kim S.: Heterocapsa busanensis sp. nov. (Peridiniales, Dinophyceae): A new marine thecate dinoflagellate from Korean coastal waters. – Eur. J. Protistol. 79: 125797, 2021. 10.1016/j.ejop.2021.125797 PubMed DOI
Consalvey M., Perkins R.G., Paterson D.M., Underwood G.J.C.: PAM fluorescence: a beginners guide for benthic diatomists. – Diatom Res. 20: 1-22, 2005. 10.1080/0269249X.2005.9705619 DOI
Cooney E.C., Fredrickson K.A., Bright K.J., Strom S.L.: Contrasting effects of high-intensity photosynthetically active radiation on two bloom-forming dinoflagellates. – J. Phycol. 55: 1082-1095, 2019. 10.1111/jpy.12890 PubMed DOI
Coulombier N., Blanchier P., Le Dean L. et al.: The effects of CO2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. – J. Biotechnol. 325: 312-324, 2021. 10.1016/j.jbiotec.2020.10.005 PubMed DOI
Coulombier N., Nicolau E., Le Déan L. et al.: Impact of light intensity on antioxidant activity of tropical microalgae. – Mar. Drugs 18: 122, 2020. 10.3390/md18020122 PubMed DOI PMC
Dahmen-Ben Moussa I., Athmouni K., Chtourou H. et al.: Phycoremediation potential, physiological, and biochemical response of Amphora subtropica and Dunaliella sp. to nickel pollution. – J. Appl. Phycol. 30: 931-941, 2018. 10.1007/s10811-017-1315-z DOI
Danouche M., El Ghatchouli N., Arroussi H.: Overview of the management of heavy metals toxicity by microalgae. – J. Appl. Phycol. 34: 475-488, 2022. 10.1007/s10811-021-02668-w DOI
Darriba D., Taboada G.L., Doallo R., Posada D.: jModelTest 2: more models, new heuristics and parallel computing. – Nat. Methods 9: 772, 2012. 10.1038/nmeth.2109 PubMed DOI PMC
Fox J.M., Zimba P.V.: Minerals and trace elements in microalgae. – In: Levine I.A., Fleurence J. (ed.): Microalgae in Health and Disease Prevention. Pp. 177-193. Academic Press, London: 2018. 10.1016/B978-0-12-811405-6.00008-6 DOI
Freeman M.A., Yokoyama H., Ogawa K.: A microsporidian parasite of the genus Spraguea in the nervous tissues of the Japanese anglerfish Lophius litulon. – Folia Parasit. 51: 167-176, 2004. 10.14411/fp.2004.020 PubMed DOI
Gouy M., Guindon S., Gascuel O.: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. – Mol. Biol. Evol. 27: 221-224, 2010. 10.1093/molbev/msp259 PubMed DOI
Guillard R.R.L., Hargraves P.E.: Stichochrysis immobilis is a diatom, not a chrysophyte. – Phycologia 32: 234-236, 1993. 10.2216/i0031-8884-32-3-234.1 DOI
Guindon S., Dufayard J.-F., Lefort V. et al.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. – Syst. Biol. 59: 307-321, 2010. 10.1093/sysbio/syq010 PubMed DOI
Guo R., Lu D., Liu C. et al.: Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae). – Ecotoxicology 31: 746-760, 2022. 10.1007/s10646-022-02532-8 PubMed DOI
Hédouin L., Metian M., Lacoue-Labarthe T. et al.: Influence of food on the assimilation of selected metals in tropical bivalves from the New Caledonia lagoon: qualitative and quantitative aspects. – Mar. Pollut. Bull. 61: 568-575, 2010. 10.1016/j.marpolbul.2010.06.034 PubMed DOI
Katoh K., Rozewicki J., Yamada K.D.: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. – Brief. Bioinform. 20: 1160-1166, 2019. 10.1093/bib/bbx108 PubMed DOI PMC
Kumar K.S., Dahms H.-U., Lee J.-S. et al.: Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. – Ecotox. Environ. Safe. 104: 51-71, 2014. 10.1016/j.ecoenv.2014.01.042 PubMed DOI
Le Grand H., Moreton B., Dolbecq M. et al.: Suivi environnemental colonne d’eau 2010–2012. [Water column environmental monitoring 2010–2012.] OEIL, 2013. [In French] Available at: https://oeil.nc/cdrn/index.php/resource/bibliographie/view/5724
Leong Y.K., Chang J.-S.: Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. – Bioresource Technol. 303: 122886, 2020. 10.1016/j.biortech.2020.122886 PubMed DOI
Litaker R.W., Vandersea M.W., Kibler S.R. et al.: Recognizing dinoflagellate species using its rDNA sequences. – J. Phycol. 43: 344-355, 2007. 10.1111/j.1529-8817.2007.00320.x DOI
Mandal M.K., Saikia P., Chanu N.K., Chaurasia N.: Modulation of lipid content and lipid profile by supplementation of iron, zinc, and molybdenum in indigenous microalgae. – Environ. Sci. Pollut. Res. 26: 20815-20828, 2019. 10.1007/s11356-019-05065-6 PubMed DOI
Martínez-Ruiz E.B., Martínez-Jerónimo F.: Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: An integrative study. – Aquat. Toxicol. 169: 27-36, 2015. 10.1016/j.aquatox.2015.10.007 PubMed DOI
Menguy E., Dumontet V., Coulombier N. et al.: A method to assess algicidal activity of microalgal extracts coupling microalgae produced in stirred closed photobioreactor operating in continuous with pulse amplitude modulated (PAM) fluorometry. – MethodsX 7: 101037, 2020. 10.1016/j.mex.2020.101037 PubMed DOI PMC
Merrot P.: Géochimie spéciation et mobilité des éléments traces métalliques (Fe, Ni, Cr et Mn) au sein des sédiments du lagon de Nouvelle-Calédonie. [Geochemical speciation and mobility of trace metals (Fe, Ni, Cr and Mn) in New Caledonian lagoon sediments.] PhD Thesis. Pp. 345. Sorbonne Université, 2019. [In French] https://theses.hal.science/tel-03137916
Merrot P., Juillot F., Flipo L. et al.: Bioavailability of chromium, nickel, iron and manganese in relation to their speciation in coastal sediments downstream of ultramafic catchments: A case study in New Caledonia. – Chemosphere 302: 134643, 2022. 10.1016/j.chemosphere.2022.134643 PubMed DOI
Mimouni V., Ulmann L., Pasquet V. et al.: The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. – Curr. Pharm. Biotechnol. 13: 2733-2750, 2012. 10.2174/138920112804724828 PubMed DOI
Msilini N., Zaghdoudi M., Govindachary S. et al.: Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA– to QB by iron deficiency. – Photosynth. Res. 107: 247-256, 2011. 10.1007/s11120-011-9628-2 PubMed DOI
Müh F., Glöckner C., Hellmich J., Zouni A.: Light-induced quinone reduction in photosystem II. – BBA-Bioenergetics 1817: 44-65, 2012. 10.1016/j.bbabio.2011.05.021 PubMed DOI
Napoléon C., Raimbault V., Claquin P.: Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. – PLoS ONE 8: e66423, 2013. 10.1371/journal.pone.0066423 PubMed DOI PMC
Nunn G.B., Theisen B.F., Christensen B., Arctander P.: Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. – J. Mol. Evol. 42: 211-223, 1996. 10.1007/BF02198847 PubMed DOI
Pelletier B.: Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. – In: Payri C.E., Richer de Forges B. (ed.): Compendium of Marine Species of New Caledonia. Pp. 19-32. IRD, Nouméa; 2007. https://www.researchgate.net/publication/268328295_Geology_of_the_New_Caledonia_Region_and_its_Implications_for_the_Study_of_the_New_Caledonian_Biodiversity
Pinto S.D.S., Souza A.E.D., Oliva M.A., Pereira E.G.: Oxidative damage and photosynthetic impairment in tropical rice cultivars upon exposure to excess iron. – Sci. Agric. 73: 217-226, 2016. 10.1590/0103-9016-2015-0288 DOI
Platt T., Gallegos C.L., Harrison W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. – J. Mar. Res. 38: 687-701, 1980. https://elischolar.library.yale.edu/journal_of_marine_research/1525/
Quigg A.: Micronutrients. – In: Borowitzka M.A., Beardall J., Raven J.A. (ed.): The Physiology of Microalgae. Developments in Applied Phycology. Vol. 6. Pp. 211-231. Springer, Cham: 2016. 10.1007/978-3-319-24945-2_10 DOI
Ralph P.J., Gademann R.: Rapid light curves: a powerful tool to assess photosynthetic activity. – Aquat. Bot. 82: 222-237, 2005. 10.1016/j.aquabot.2005.02.006 DOI
Ravet K., Pilon M.: Copper and iron homeostasis in plants: the challenges of oxidative stress. – Antioxid. Redox Sign. 19: 919-932, 2013. 10.1089/ars.2012.5084 PubMed DOI PMC
R Core Team: R: A language and environment for statistical computing, 2017. Available at: https://www.r-project.org/.
Ronquist F., Huelsenbeck J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. – Bioinformatics 19: 1572-1574, 2003. 10.1093/bioinformatics/btg180 PubMed DOI
Sathasivam R., Ki J.-S.: A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. – Mar. Drugs 16: 26, 2018. 10.3390/md16010026 PubMed DOI PMC
Satoh A., Vudikaria L.Q., Kurano N., Miyachi S.: Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. – Environ. Int. 31: 713-722, 2005. 10.1016/j.envint.2005.01.001 PubMed DOI
Scholin C.A., Herzog M., Sogin M., Anderson D.M.: Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. – J. Phycol. 30: 999-1011, 1994. 10.1111/j.0022-3646.1994.00999.x DOI
Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. – In: Schulze E.-D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin-Heidelberg: 1995. 10.1007/978-3-642-79354-7_3 DOI
Seco J., Aparício S., Brierley A.S. et al.: Mercury biomagnification in a Southern Ocean food web. – Environ. Pollut. 275: 116620, 2021. 10.1016/j.envpol.2021.116620 PubMed DOI
Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht: 1995.
Tamura K., Stecher G., Kumar S.: MEGA11: Molecular evolutionary genetics analysis version 11. – Mol. Biol. Evol. 38: 3022-3027, 2021. 10.1093/molbev/msab120 PubMed DOI PMC
Wan M., Jin X., Xia J. et al.: The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. – Appl. Microbiol. Biot. 98: 9473-9481, 2014. 10.1007/s00253-014-6088-6 PubMed DOI
Wang H., Su Q., Zhuang Y. et al.: Effects of iron valence on the growth, photosynthesis, and fatty acid composition of Phaeodactylum tricornutum. – J. Mar. Sci. Eng. 11: 316, 2023. 10.3390/jmse11020316 DOI
Xiao J., Sun N., Zhang Y. et al.: Heterocapsa bohaiensis sp. nov. (Peridiniales: Dinophyceae): a novel marine dinoflagellate from the Liaodong Bay of Bohai Sea, China. – Acta Oceanol. Sin. 37: 18-27, 2018. 10.1007/s13131-018-1296-z DOI
Yong W.-K., Sim K.-S., Poong S.-W. et al.: Physiological and metabolic responses of Scenedesmus quadricauda (Chlorophyceae) to nickel toxicity and warming. – 3 Biotech 9: 315, 2019. 10.1007/s13205-019-1848-8 PubMed DOI PMC
Yruela I.: Transition metals in plant photosynthesis. – Metallomics 5: 1090-1109, 2013. 10.1039/c3mt00086a PubMed DOI
Zhang Y., Feng T., Qu J. et al.: Toxicity and haemolytic activity of a newly described dinoflagellate, Heterocapsa bohainensis to the rotifer Brachionus plicatilis. – Harmful Algae 84: 112-118, 2019. 10.1016/j.hal.2019.03.007 PubMed DOI