Intraspecific variation in photosynthetic efficiency in soybean (Glycine max L.) varieties towards solar ultraviolet radiations
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650673
PubMed Central
PMC11515822
DOI
10.32615/ps.2022.048
PII: PS61203
Knihovny.cz E-zdroje
- Klíčová slova
- OJIP transient, PSII efficiency, UV exclusion, chlorophyll fluorescence, photosynthesis, soybean,
- Publikační typ
- časopisecké články MeSH
In the current study, we used four soybean varieties PK-1029, PK-472, NRC-7, and Hardee to examine the effect of exclusion of solar UV radiation on photosynthetic efficiency and to test possible variety-dependent sensitivity to ambient UV (280-400 nm). Plants that were grown under UV exclusion filters had higher chlorophyll a and b, efficiencies of PSII and more active reaction centers indicated that PSII were substantially affected by solar UV radiation. The significant increase in net photosynthesis was linked to increased stomatal conductance and lower intercellular concentration of CO2 in UV-excluded plants. The exclusion of solar UV increased seed mass per plant in all soybean varieties as compared to the control; this indicates that ambient UV exclusions boost photosynthetic efficiency and improve soybean yield. The overall cumulative stress response index of four varieties implies that Hardee and PK-472 were more sensitive whereas NRC-7 and PK-1029 were resistant to ambient UV radiations.
Department of Agriculture Food and Environment University of Pisa 56124 Pisa Italy
Division of Plant Physiology Indian Institute of Soybean Research Indore India
School of Biochemistry Devi Ahilya Vishwavidyalaya Indore India
Sri Vaishnav Vidyapeeth Vishwavidyalaya Indore India
SwaTukojirao Pawar Shaskiya Vigyan Mahavidyalaya Dewas India
Zobrazit více v PubMed
Albert K.R., Mikkelsen T.N., Ro-Poulsen H.: Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. – Physiol. Plantarum 124: 208-226, 2005. 10.1111/j.1399-3054.2005.00502.x DOI
Allakhverdiev S.I.: Optimising photosynthesis for environmental fitness. – Funct. Plant Biol. 47: 3-7, 2020. 10.1071/FPv47n11_FO PubMed DOI
Allen D.J., McKee I.F., Farage P.K., Baker N.R.: Analysis of limitations of CO2 assimilation on exposure to leaves of two Brassica napus cultivars of UV-B. – Plant Cell Environ. 20: 633-640, 1997. 10.1111/j.1365-3040.1997.00093.x DOI
Allen D.J., Nogués S., Baker N.R.: Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? – J. Exp. Bot. 49: 1775-1788, 1998. 10.1093/jxb/49.328.1775 DOI
Allen D.J., Nogués S., Morison J.I.L. et al..: A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. – Glob. Change Biol. 5: 235-244, 1999. 10.1046/j.1365-2486.1999.00227.x DOI
Amudha P., Jayakumar M., Kulandaivelu G.: Impacts of ambient solar UV (280–400 nm) radiation on three tropical legumes. – J. Plant Biol. 48: 284-291, 2005. 10.1007/BF03030524 DOI
Bais A.F., Lucas R.M., Bornman J.F. et al..: Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP environmental effects assessment panel, update 2017. – Photoch. Photobio. Sci. 17: 127-179, 2018. 10.1039/C7PP90043K PubMed DOI PMC
Baker N., Nogués S., Allen D.J.: Photosynthesis and photoinhibition. – In: Lumsden P.J. (ed.): Plant and UVB: Responses to Environmental Change. Society for Experimental Biology Seminar Series 64. Pp. 233-246. Cambridge University Press, Cambridge: 1997. 10.1017/CBO9780511752346.007 DOI
Ballaré C.L., Caldwell M.M., Flint S.D. et al..: Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms and interactions with climate change. – Photoch. Photobio. Sci. 10: 226-241, 2011. 10.1039/c0pp90035d PubMed DOI
Baroniya S.S., Kataria S., Pandey G.P., Guruprasad K.N.: Intraspecific variation in sensitivity to ambient ultraviolet-B radiation in growth and yield characteristics of eight soybean cultivars grown under field conditions. – Braz. J. Plant Physiol. 23: 197-202, 2011. 10.1590/S1677-04202011000300003 DOI
Baroniya S.S., Kataria S., Pandey G.P., Guruprasad K.N.: Intraspecific variations in antioxidant defense responses and sensitivity of soybean varieties to ambient UV radiation. – Acta Physiol. Plant. 35: 1521-1530, 2013. 10.1007/s11738-012-1193-6 DOI
Baroniya S.S., Kataria S., Pandey G.P., Guruprasad K.N.: Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation. – Crop J. 2: 388-397, 2014. 10.1016/j.cj.2014.08.002 DOI
Barsig M., Malz R.: Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation. – Environ. Exp. Bot. 43: 121-130, 2000. 10.1016/S0098-8472(99)00049-0 DOI
Björn L.O.: Ultraviolet-A, B, and C. – UV4 Plants Bull. 1: 17-18, 2015. 10.19232/uv4pb.2015.1.12 DOI
Bornman J.F., Barnes P.W., Robson T.M. et al..: Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. – Photoch. Photobio. Sci. 18: 681-716, 2019. 10.1039/c8pp90061b PubMed DOI
Brestic M., Yang X., Li X., Allakhverdiev S.I.: Crop photosynthesis for the twenty-first century. – Photosynth. Res. 150: 1-3, 2021. 10.1007/s11120-021-00869-5 PubMed DOI
Brestic M., Zivcak M., Hauptvogel P. et al..: Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. – Photosynth. Res. 136: 245-255, 2018. 10.1007/s11120-018-0486-z PubMed DOI
Caldwell M.M., Bornman J.F., Ballaré C.L. et al..: Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. – Photoch. Photobio. Sci. 6: 252-266, 2007. 10.1039/b700019g PubMed DOI
Cechin I., Fumis T.D.F., Dokkedal A.L.: Growth and physiological responses of sunflower plants exposed to ultraviolet-B radiation. – Cienc. Rural 37: 85-90, 2007. 10.1590/S0103-84782007000100014 DOI
Çiçek N., Fedina I., Çakirlar H. et al..: The role of short-term high temperature pretreatment on the UV-B tolerance of barley cultivars. – Turk. J. Agric. For. 36: 153-165, 2012. 10.3906/tar-1102-15 DOI
Clark A.J., Landolt W., Bucher J.B., Strasser R.J.: How wind affects the photosynthetic performance of trees: quantified with chlorophyll a fluorescence and open-top chambers. – Photosynthetica 38: 349-360, 2000. 10.1023/A:1010909201307 DOI
Dehariya P., Kataria S., Guruprasad K.N., Pandey G.P.: Photosynthesis and yield in cotton (Gossypium hirsutum L.) var. Vikram after exclusion of ambient solar UV-B/A. – Acta Physiol. Plant. 34: 1133-1144, 2012. 10.1007/s11738-011-0910-x DOI
Dehariya P., Kataria S., Pandey G.P., Guruprasad K.N.: Assessment of impact of solar UV components on growth and antioxidant enzyme activity in cotton plant. – Physiol. Mol. Biol. Pla. 17: 223-229, 2011. 10.1007/s12298-011-0071-9 PubMed DOI PMC
Dias M.C., Pinto D.C.G.A., Correia C. et al..: UV-B radiation modulates physiology and lipophilic metabolite profile in Olea europaea. – J. Plant Physiol. 222: 39-50, 2018. 10.1016/j.jplph.2018.01.004 PubMed DOI
Dobrikova A.G., Krasteva V., Apostolova E.L.: Damage and protection of the photosynthetic apparatus from UV-B radiation. I. Effect of ascorbate. – J. Plant Physiol. 170: 251-257, 2013. 10.1016/j.jplph.2012.10.002 PubMed DOI
Dotto M., Casati P.: Developmental reprogramming by UV-B radiation in plants. – Plant Sci. 264: 96-101, 2017. 10.1016/j.plantsci.2017.09.006 PubMed DOI
Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. – Photosyntetica 58: 293-300, 2020. 10.32615/ps.2019.147 DOI
Ferreira M.I., Uliana M.R., Costa S.M. et al..: Exclusion of solar UV radiation increases the yield of curcuminoid in Curcuma longa L. – Ind. Crop. Prod. 89: 188-194, 2016. 10.1016/j.indcrop.2016.05.009 DOI
Goltsev V.N., Kalaji H.M., Paunov M. et al..: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. – Russ. J. Plant Physiol. 63: 869-893, 2016. 10.1134/S1021443716050058 DOI
Guruprasad K., Bhattacharjee S., Kataria S. et al..: Growth enhancement of soybean (Glycinemax) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. – Photosynth. Res. 94: 299-306, 2007. 10.1007/s11120-007-9190-0 PubMed DOI
Hakala K., Jauhiainen L., Hoskela T. et al..: Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. – J. Agron. Crop Sci. 188: 8-18, 2002. 10.1046/j.1439-037x.2002.00536.x DOI
Hideg É., Jansen M.A.K., Strid Å.: UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? – Trends Plant Sci. 18: 107-115, 2013. 10.1016/j.tplants.2012.09.003 PubMed DOI
Hidema J., Kumagai T.: Sensitivity of rice to ultraviolet-B radiation. – Ann. Bot.-London 97: 933-942, 2006. 10.1093/aob/mcl044 PubMed DOI PMC
Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. – Can. J. Bot. 57: 1332-1334, 1979. 10.1139/b79-163 DOI
Hollósy F.: Effects of ultraviolet radiation on plant cells. – Micron 33: 179-197, 2002. 10.1016/S0968-4328(01)00011-7 PubMed DOI
Jansen M.A.K.: Ultraviolet-B radiation effects on plants: induction of morphogenic responses. – Physiol. Plantarum 116: 423-429, 2002. 10.1034/j.1399-3054.2002.1160319.x DOI
Jansen M.A.K., van den Noort R.E.: Ultraviolet-B radiation induces complex alterations in stomatal behaviour. – Physiol. Plantarum 110: 189-194, 2000. 10.1034/j.1399-3054.2000.110207.x DOI
Jenkins G.I.: Signal transduction in responses to UV-B radiation. – Annu. Rev. Plant Biol. 60: 407-431, 2009. 10.1146/annurev.arplant.59.032607.092953 PubMed DOI
Jordan B.R.: Review: Molecular response of plant cells to UV-B stress. – Funct Plant Biol. 29: 909-916, 2002. 10.1071/FP02062 PubMed DOI
Joshi-Paneri J., Sharma S., Guruprasad K.N.: Impact of exclusion of solar UV on growth, performance index of Photosystem II and leghemoglobin content of soybean var. JS 335. – J. Plant Biol. Crop Res. 3: 1023, 2020. http://meddocsonline.org/journal-of-plant-biology-and-crop-research/impact-of-exclusion-of-solar-UV-on-growth-performance-index-of-photosystem-II-and-leghemoglobin-content-of-soybean-var-JS-335.html
Jumrani K., Bhatia V.S.: Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. – Physiol. Mol. Biol. Pla. 24: 37-50, 2018. 10.1007/s12298-017-0480-5 PubMed DOI PMC
Jumrani K., Bhatia V.S.: Identification of drought tolerant genotypes using physiological traits in soybean. – Physiol. Mol. Biol. Pla. 25: 697-711, 2019a. 10.1007/s12298-019-00665-5 PubMed DOI PMC
Jumrani K., Bhatia V.S.: Interactive effect of temperature and water stress on physiological and biochemical processes in soybean (Glycine max). – Physiol. Mol. Biol. Pla. 25: 667-681, 2019b. 10.1007/s12298-019-00657-5 PubMed DOI PMC
Kalaji H.M., Schansker G., Ladle R.J. et al..: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. – Photosynth. Res. 122: 121-158, 2014. 10.1007/s11120-014-0024-6 PubMed DOI PMC
Kataria S., Guruprasad K.N.: Solar UV-B and UV-A/B exclusion effects on intraspecific variations in crop growth and yield of wheat varieties. – Field Crop. Res. 125: 8-13, 2012a. 10.1016/j.fcr.2011.08.011 DOI
Kataria S., Guruprasad K.N.: Intraspecific variations in growth, yield and photosynthesis of sorghum varieties to ambient UV (280–400 nm) radiation. – Plant Sci. 196: 85-92, 2012b. 10.1016/j.plantsci.2012.07.011 PubMed DOI
Kataria S., Guruprasad K.N.: Exclusion of solar UV components improves growth and performance of Amaranthus tricolor varieties. – Sci. Hortic.-Amsterdam 174: 36-45, 2014. 10.1016/j.scienta.2014.05.003 DOI
Kataria S., Guruprasad K.N.: Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties. – Plant Physiol. Bioch. 97: 400-411, 2015. 10.1016/j.plaphy.2015.10.001 PubMed DOI
Kataria S., Guruprasad K.N.: Interaction of cytokinins with UV-B (280–315 nm) on the expansion growth of cucumber cotyledons. – Hortic. Int. J. 2: 45-53, 2018. 10.15406/hij.2018.02.00025 DOI
Kataria S., Guruprasad K.N., Ahuja S., Singh B.: Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. – J. Photoch. Photobio. B 127: 140-152, 2013. 10.1016/j.jphotobiol.2013.08.013 PubMed DOI
Kataria S., Jain M., Rastogi A., Brestic M.: Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation. – Photosynth. Res. 150: 263-278, 2021. 10.1007/s11120-021-00850-2 PubMed DOI
Kataria S., Jajoo A., Guruprasad K.N.: Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. – J. Photoch. Photobio. B 137: 55-66, 2014. 10.1016/j.jphotobiol.2014.02.004 PubMed DOI
Keiller D.R., Holmes M.G.: Effects of long-term exposure to elevated UV-B radiation on the photosynthetic performance of five broad-leaved tree species. – Photosynth. Res. 67: 229-240, 2001. 10.1023/A:1010620228989 PubMed DOI
Keiller D.R., Mackerness S.A.-H., Holmes M.G.: The action of a range of supplementary ultraviolet (UV) wavelengths on photosynthesis in Brassica napus L. in the natural environment: effects on PSII, CO2 assimilation and level of chloroplast proteins. – Photosynth. Res. 75: 139-150, 2003. 10.1023/A:1022812229445 PubMed DOI
Kliebenstein D.J., Lim J.E., Landry L.G., Last R.L.: Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. – Plant Physiol. 130: 234-243, 2002. 10.1104/pp.005041 PubMed DOI PMC
Koubouris G.C., Kavroulakis N., Metzidakis I.T. et al..: Ultraviolet-B radiation or heat cause changes in photosynthesis, antioxidant enzyme activities and pollen performance in olive tree. – Photosynthetica 53: 279-287, 2015. 10.1007/s11099-015-0102-9 DOI
Láposi R., Veres S., Mészáros I.: Ecophysiological investigation of UV-B tolerance of beech saplings (Fagus sylvatica L.). – Acta. Silv. Lign. Hung. 4: 7-16, 2008. http://real-j.mtak.hu/18300/1/ASLH_4_2008.pdf
Lee H.-Y., Chow W.S., Hong Y.-N.: Photoinactivation of photosystem II in leaves of Capsicum annuum. – Physiol. Plantarum 105: 376-383, 1999. 10.1034/j.1399-3054.1999.105224.x DOI
Lesser M.P., Neale P.J., Cullen J.J.: Acclimation of Antarctic phytoplankton to ultraviolet radiation: Ultraviolet-absorbing compounds and carbon fixation. – Mol. Marine Biol. Biotechnol. 5: 314-325, 1996.
Lichtenthaler H.K., Ač A., Marek M.V. et al..: Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. – Plant Physiol. Bioch. 45: 577-588, 2007. 10.1016/j.plaphy.2007.04.006 PubMed DOI
Lidon F.C., Ramalho J.C.: Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. – J. Photoch. Photobio. B 104: 457-466, 2011. 10.1016/j.jphotobiol.2011.05.004 PubMed DOI
Lidon F.J.C., Reboredo F.H., Leitão A.E. et al..: Impact of UV-B radiation on photosynthesis – An overview. – Emir. J. Food Agric. 24: 546-556, 2012. https://www.ejfa.me/index.php/journal/article/view/972
Liu B., Liu X.-B., Li Y.-S., Herbert S.J.: Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. – Field Crop. Res. 154: 158-163, 2013. 10.1016/j.fcr.2013.08.006 DOI
Machado F., Dias M.C., Pinho P.G. et al..: Photosynthetic performance and volatile organic compounds profile in Eucalyptus globulus after UVB radiation. – Environ. Exp. Bot. 140: 141-149, 2017. 10.1016/j.envexpbot.2017.05.008 DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
McKenzie R.L., Aucamp P.J., Bais A.F. et al..: Ozone depletion and climate change: impacts on UV radiation. – Photoch. Photobio. Sci. 10: 182-198, 2011. 10.1039/c0pp90034f PubMed DOI
Melis A., Nemson J.A., Harrison M.A.: Damage to functional components and partial degradation of photosystem II reaction centre proteins upon chloroplast exposure to ultraviolet-B radiation. – BBA-Bioenergetics 1109: 312-320, 1992. 10.1016/0167-4838(92)90487-X DOI
Musil C.F., Chimphango S.B.M., Dakora F.D.: Effects of elevated ultraviolet-B radiation on native and cultivated plants of southern Africa. – Ann. Bot.-London 90: 127-137, 2002. 10.1093/aob/mcf156 PubMed DOI PMC
Nogués S., Allen D.J., Morison J.I.L., Baker N.R.: Characterization of stomatal closure caused by ultraviolet-B radiation. – J. Plant Physiol. 121: 489-496, 1999. 10.1104/pp.121.2.489 PubMed DOI PMC
Nogués S., Baker N.R.: Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B. – Plant Cell Environ. 18: 781-787, 1995. 10.1111/j.1365-3040.1995.tb00581.x DOI
Pal M., Sharma A., Abrol Y.P., Sengupta U.K.: Exclusion of solar UV-B radiation from normal spectrum on growth of mung bean and maize. – Agr. Ecosyst. Environ. 61: 29-34, 1997. 10.1016/S0167-8809(96)01087-0 DOI
Pal M., Zaidi P.H., Voleti S.R., Raj A.: Solar UV-B exclusion effects on growth and photosynthetic characteristics of wheat and pea. – J. New Seeds 8: 19-34, 2006. 10.1300/J153v08n01_02 DOI
Piccini C., Cai G., Dias M.C. et al..: UV-B radiation affects photosynthesis-related processes of two Italian Olea europaea (L.) varieties differently. – Plants-Basel 9: 1712, 2020. 10.3390/plants9121712 PubMed DOI PMC
Piccini C., Cai G., Dias M.C. et al..: Olive varieties under UV-B stress show distinct responses in terms of antioxidant machinery and isoform/activity of RubisCO. – Int. J. Mol. Sci. 22: 11214, 2021. 10.3390/ijms222011214 PubMed DOI PMC
Ranjbarfordoei A., Samson R., Van Damme P.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. – Photosynthetica 44: 513-522, 2006. 10.1007/s11099-006-0064-z DOI
Rastogi A., Kovar M., He X. et al..: JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. – Photosynthetica 58: 518-528, 2020. 10.32615/ps.2019.169 DOI
Rastogi A., Stróżecki M., Kalaji H.M. et al..: Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peat land vegetation. – Environ. Exp. Bot. 160: 71-80, 2019. 10.1016/j.envexpbot.2019.01.005 DOI
Reddy K.R., Singh S.K., Koti S. et al..: Quantifying the effects of corn growth and physiological responses to ultraviolet-B radiation for modeling. – Agron. J. 105: 1367-1377, 2013. 10.2134/agronj2013.0113 DOI
Robson T.M., Klem K., Urban O., Jansen M.A.K.: Re-interpreting plant morphological responses to UV-B radiation. – Plant Cell Environ. 38: 856-866, 2015. 10.1111/pce.12374 PubMed DOI
Rousseaux M.C., Flint S.D., Searles P.S., Caldwell M.M.: Plant responses to current solar ultraviolet-B radiation and supplemented solar ultraviolet-B radiation simulating ozone depletion: an experimental comparison. – Photochem. Photobiol. 80: 224-230, 2004. 10.1111/j.1751-1097.2004.tb00075.x PubMed DOI
Schumaker M.A., Bassman J.H., Robberecht R., Radamaker G.K.: Growth, leaf anatomy and physiology of Populus clones in response to solar ultraviolet-B radiation. – Tree Physiol. 17: 617-626, 1997. 10.1093/treephys/17.10.617 PubMed DOI
Searles P.S., Flint S.D., Caldwell M.M.: A meta-analysis of plant field studies stimulating stratospheric ozone depletion. – Oecologia 127: 1-10, 2001. 10.1007/s004420000592 PubMed DOI
Semerdjieva S., Sheffield E., Phoenix G. et al..: Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. – Plant Cell Environ. 26: 957-964, 2003. 10.1046/j.1365-3040.2003.01029.x PubMed DOI
Sharma S., Kataria S., Joshi J., Guruprasad K.N.: Antioxidant defense response of fenugreek to solar UV. – Int. J. Veg. Sci. 25: 40-57, 2019. 10.1080/19315260.2018.1466844 DOI
Shweta M., Agrawal S.B.: Interactive effects between supplemental ultraviolet-B radiation and heavy metals on the growth and biochemical characteristics of Spinacia oleracea L. – Braz. J. Plant Physiol. 18: 307-314, 2006. 10.1590/S1677-04202006000200007 DOI
Srivastava A., Strasser R.J., Govindjee: Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700*. – Photosynthetica 37: 365-392, 1999. 10.1023/A:1007199408689 DOI
Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: The JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht: 1995.
Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. – In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London: 2000. https://www.researchgate.net/publication/252250818_The_fluorescence_transient_as_a_tool_to_characterize_and_screen_photosynthetic_samples
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_12 DOI
Strid Å., Chow W.S., Anderson J.M.: UV-B damage and protection at the molecular level in plants. – Photosynth. Res. 39: 475-489, 1994. 10.1007/BF00014600 PubMed DOI
Surabhi G.-K., Reddy K.R., Singh S.K.: Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. – Environ. Exp. Bot. 66: 160-171, 2009. 10.1016/j.envexpbot.2009.02.004 DOI
Swarna K., Bhanumathi G., Murthy S.D.S.: Studies on the UV-B radiation induced oxidative damage in thylakoid photofunctions and analysis of the role of antioxidant enzymes in maize primary leaves. – Bioscan 7: 609-610, 2012.
Van Heerden P.D.R., Tsimilli-Michael M., Krüger G.H.J., Strasser R.J.: Dark chilling effects on soybean genotypes during vegetative development: Parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. – Physiol. Plantarum 117: 476-491, 2003. 10.1034/j.1399-3054.2003.00056.x PubMed DOI
Vandenbussche F., Yu N., Li W. et al..: An ultraviolet B condition that affects growth and defense in Arabidopsis. – Plant Sci. 268: 54-63, 2018. 10.1016/j.plantsci.2017.12.005 PubMed DOI
Visser A.J., Tosserams M., Groen M.W. et al..: The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. 3. Leaf optical properties, pigments, stomatal index and epidermal cell intensity. – Plant Ecol. 128: 209-222, 1997. 10.1023/A:1009727410971 DOI
Wang Y., Wang X.A., Wang R.J. et al..: [Effects of UV-B radiation on the growth and reproduction of Vicia angustifolia.] – J. Appl. Ecol. 23: 1333-1338, 2012. [In Chinese] https://europepmc.org/article/MED/22919845 PubMed
Wellburn A.R., Lichtenthaler H.: Formulae and program to determine total carotenoids and chlorophyll a and b of leaf extracts in different solvents. – In: Sybesma C. (ed.): Advances in Photosynthesis Research. Pp. 9-12. Springer, Dordrecht: 1984. 10.1007/978-94-017-6368-4_3 DOI
Yao X., Liu Q.: The effects of enhanced ultraviolet-B and nitrogen supply on growth, photosynthesis and nutrient status of Abies faxoniana seedlings. – Acta Physiol. Plant. 31: 523-529, 2009. 10.1007/s11738-008-0261-4 DOI
Zhao D., Reddy K.R., Kakani V.G. et al..: Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. – J. Plant Physiol. 161: 581-590, 2004. 10.1078/0176-1617-01229 PubMed DOI
Zhu P.-J., Yang L.: Ambient UV-B radiation inhibits the growth and physiology of Brassica napus L. on the Qinghai-Tibetan plateau. – Field Crop. Res. 171: 79-85, 2015. 10.1016/j.fcr.2014.11.006 DOI
Zlatev Z.S., Lidon F.J.C., Kaimakanova M.: Plant physiological responses to UV-B radiation. – Emir. J. Food Agric. 24: 481-501, 2012. https://www.ejfa.me/index.php/journal/article/view/943#:~:text=UV-B can influence plant processes either through direct,affecting various physiological processes%2C including the photosynthetic apparatus
Zuk-Golaszewska K., Upadhyaya M.K., Golaszewski J.: The effect of UV-B radiation on plant growth and development. – Plant Soil Environ. 49: 135-140, 2003. 10.17221/4103-PSE DOI