• This record comes from PubMed

Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana

. 2023 ; 61 (2) : 215-224. [epub] 20230324

Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection

Document type Journal Article

The light spectral composition acting through a set of photoreceptors, such as cryptochromes and phytochromes, plays an important role in maintaining sustainable photosynthesis. An impact of cryptochrome 1 deficiency and additions of green light (GL) against the background of red (RL) and blue (BL) (different ratios of RL:BL:GL) on the activity of the photosynthetic apparatus, the content of photosynthetic pigments, pro-/antioxidant balance, and expression of some genes in the leaves of 23-d-old Arabidopsis thaliana hy4 mutant plants was studied. The deficiency of cryptochrome 1 at RL/BL ratio of 4:1 led to a decrease in the rate of photosynthesis, photosystem II activity, and activity of ascorbate peroxidase and total peroxidase but to an increase in the content of products reacting with thiobarbituric acid. However, in the presence of additional GL, this difference for photosynthetic parameters either decreased or was absent, likely due to a GL-induced decrease in the content of active cryptochrome.

See more in PubMed

Balakhnina T.I., Nadezhkina E.S.: Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. – Russ. J. Plant Physiol. 64: 215-223, 2017. 10.1134/S1021443717010022 DOI

Bouly J.-P., Schleicher E., Dionisio-Sese M. et al..: Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. – J. Biol. Chem. 282: 9383-9391, 2007. 10.1074/jbc.M609842200 PubMed DOI

Cao K., Yu J., Xu D. et al..: Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. – BMC Plant Biol. 18: 92, 2018. 10.1186/s12870-018-1310-9 PubMed DOI PMC

Chaves I., Pokorny R., Byrdin M. et al..: The cryptochromes: blue light photoreceptors in plants and animals. – Annu. Rev. Plant Biol. 62: 335-364, 2011. 10.1146/annurev-arplant-042110-103759 PubMed DOI

D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. – Front. Plant Sci. 9: 1897, 2018. 10.3389/fpls.2018.01897 PubMed DOI PMC

Demotes-Mainard S., Péron T., Corot A. et al..: Plant responses to red and far-red lights, applications in horticulture. – Environ. Exp. Bot. 121: 4-21, 2016. 10.1016/j.envexpbot.2015.05.010 DOI

Fantini E., Sulli M., Zhang L. et al..: Pivotal roles of cryptochromes 1a and 2 in tomato development and physiology. – Plant Physiol. 179: 732-748, 2019. 10.1104/pp.18.00793 PubMed DOI PMC

Folta K.M., Maruhnich S.A.: Green light: a signal to slow down or stop. – J. Exp. Bot. 58: 3099-3111, 2007. 10.1093/jxb/erm130 PubMed DOI

Giliberto L., Perrotta G., Pallara P. et al..: Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. – Plant Physiol. 137: 199-208, 2005. 10.1104/pp.104.051987 PubMed DOI PMC

Goltsev V.N., Kalaji H.M., Paunov M. et al..: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. – Russ. J. Plant Physiol. 63: 869-893, 2016. 10.1134/S1021443716050058 DOI

Kim H.-H., Goins G.D., Wheeler R.M., Sager J.C.: Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. – HortScience 39: 1617-1622, 2004. 10.21273/HORTSCI.39.7.1617 PubMed DOI

Kleine T., Kindgren P., Benedict C. et al..: Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. – Plant Physiol. 144: 1391-1406, 2007. 10.1104/pp.107.098293 PubMed DOI PMC

Kolosova N., Miller B., Ralph S. et al..: Isolation of high-quality RNA from gymnosperm and angiosperm trees. – Biotechniques 36: 821-824, 2004. 10.2144/04365ST06 PubMed DOI

Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I.: Transduction mechanisms of photoreceptor signals in plant cells. – J. Photoch. Photobio. C 10: 63-80, 2009. 10.1016/j.jphotochemrev.2009.04.001 DOI

Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al..: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. – Plant Physiol. Bioch. 81: 135-142, 2014. 10.1016/j.plaphy.2014.02.020 PubMed DOI

Kreslavski V.D., Strokina V.V., Khudyakova A.Yu. et al..: Effect of high-intensity light and UV-B on photosynthetic activity and the expression of certain light-responsive genes in A. thaliana phyA and phyB mutants. – BBA-Bioenergetics 1862: 148445, 2021. 10.1016/j.bbabio.2021.148445 PubMed DOI

Kreslavski V.D., Strokina V.V., Pashkovskiy P.P. et al..: Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. – J. Photoch. Photobio. B 210: 111976, 2020. 10.1016/j.jphotobiol.2020.111976 PubMed DOI

Li L., Tong Y.X., Lu J.L. et al..: Morphology, photosynthetic traits, and nutritional quality of lettuce plants as affected by green light substituting proportion of blue and red light. – Front. Plant Sci. 12: 627311, 2021. 10.3389/fpls.2021.627311 PubMed DOI PMC

Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI

Lin C., Todo T.: The cryptochromes. – Genome Biol. 6: 220, 2005. 10.1186/gb-2005-6-5-220 PubMed DOI PMC

Lin C., Yang H., Guo H. et al..: Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. – P. Natl. Acad. Sci. USA 95: 2686-2690, 1998. 10.1073/pnas.95.5.2686 PubMed DOI PMC

Liu B., Yang Z., Gomez A. et al..: Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. – J. Plant Res. 129: 137-148, 2016. 10.1007/s10265-015-0782-z PubMed DOI PMC

Liu H., Liu B., Zhao C. et al..: The action mechanisms of plant cryptochromes. – Trends Plant Sci. 16: 684-691, 2011. 10.1016/j.tplants.2011.09.002 PubMed DOI PMC

Mirecki R.M., Teramura A.H.: Effect of ultraviolet B irradiance on soybean: V. The dependence of plant sensitivity on photosynthesis flux density during and after leaf expansion. – Plant Physiol. 74: 475-480, 1984. 10.1104/pp.74.3.475 PubMed DOI PMC

Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. 10.1093/oxfordjournals.pcp.a076232 DOI

Pashkovskiy P.P., Vankova R., Zlobin I.E. et al..: Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. – Plant Physiol. Bioch. 140: 105-112, 2019. 10.1016/j.plaphy.2019.04.037 PubMed DOI

Re R., Pellegrini N., Proteggente A. et al..: Antioxidant activity applying an improved ABTS radical cation decolorization assay. – Free Radical Bio. Med. 26: 1231-1237, 1999. 10.1016/S0891-5849(98)00315-3 PubMed DOI

Sellaro R., Crepy M., Trupkin S.A. et al..: Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. – Plant Physiol. 154: 401-409, 2010. 10.1104/pp.110.160820 PubMed DOI PMC

Şen A.: Oxidative stress studies in plant tissue culture. – In: El-Missiry M.A. (ed.): Antioxidant Enzyme. Pp. 59-88. InTechOpen, 2012. 10.5772/48292 DOI

Shmarev A.N., Shirshikova G.N., Lyubimov V.Yu., Kreslavski V.D.: Effect of phytochrome deficit on activity of ascorbate peroxidase and phenylalanine ammonia-lyase and expression of genes APX1, tAPX, sAPX, and PAL in the leaves of Arabidopsis thaliana plants exposed to UV-A and red light. – Russ. J. Plant Physiol. 67: 953-959, 2020. 10.1134/S1021443720050143 DOI

Smith H.L., McAusland L., Murchie E.H.: Don’t ignore the green light: Exploring diverse roles in plant processes. – J. Exp. Bot. 68: 2099-2110, 2017. 10.1093/jxb/erx098 PubMed DOI

Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 36-57, 2011. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI

Voitsekhovskaja O.V.: Phytochromes and other (photo)receptors of information in plants. – Russ. J. Plant Physiol. 66: 351-364, 2019. 10.1134/S1021443719030154 DOI

Wang Y., Folta K.M.: Contributions of green light to plant growth and development. – Am. J. Bot. 100: 70-78, 2013. 10.3732/ajb.1200354 PubMed DOI

Yang H.-Q., Wu Y.-J., Tang R.-H. et al..: The C termini of Arabidopsis cryptochromes mediate a constitutive light response. – Cell 103: 815-827, 2000. 10.1016/S0092-8674(00)00184-7 PubMed DOI

Zhang T., Folta K.M.: Green light signaling and adaptive response. – Plant Signal. Behav. 7: 75-78, 2012. 10.4161/psb.7.1.18635 PubMed DOI PMC

Zhang Y., Kaiser E., Zhang Y. et al..: Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). – Physiol. Plantarum 167: 144-158, 2019. 10.1111/ppl.12876 PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...