Changes of dorsoventral asymmetry and anoxygenic photosynthesis in response of Chelidonium majus leaves to the SiO2 nanoparticle treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651360
PubMed Central
PMC11558580
DOI
10.32615/ps.2023.016
PII: PS61275
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 assimilation kinetics, cyclic electron transport around PSII, energy storage, photobaric signal, photothermal signal, transpiration kinetics,
- Publikační typ
- časopisecké články MeSH
Natural SiO2 nanoparticles (SiO2-NPs) are widely distributed in the environment, and at the same time, synthetic SiO2-NP may be applied in agriculture. Evaluations of physiological responses to SiO2-NPs treatment of plants are controversial. They are often performed at adaxial leaf sides whereas NPs permeate leaf tissues through stomata located at the abaxial leaf side in the majority of bifacial plants. We measured coefficients of the functional dorsoventral asymmetry of NPs-stressed Chelidonium majus leaves, S, by values of the CO2 assimilation rate (SP N), dark respiration (SR), maximal and operating quantum yields of photosystem II (SFv/Fm, SFv'/Fm'; using PAM-fluorometry), and oxygen coefficients of photosynthesis (SΨO2; using photoacoustics). The results indicated that SP N and SΨO2 were significantly influenced by SiO2-NPs treatment, since P N and ΨO2 were declining more markedly when the light was directed to the abaxial side of leaves compared to the adaxial side. Overall, SiO2-NPs-induced stress increased 'anoxygenity' of photosynthesis.
Academy of Biology and Biotechnology Southern Federal University Rostov on Don Russia
Key Laboratory of Advanced Process Control for Light Industry Jiangnan University Wuxi China
Zobrazit více v PubMed
Alam P., Arshad M., Al-Kheraif A.A. et al.: Silicon nanoparticle-induced regulation of carbohydrate metabolism, photosynthesis, and ROS homeostasis in Solanum lycopersicum subjected to salinity stress. – ACS Omega 7: 31834-31844, 2022. 10.1021/acsomega.2c02586 PubMed DOI PMC
Allakhverdiev S.I., Klimov V.V., Carpentier R.: Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. – Biochemistry 36: 4149-4154, 1997. 10.1021/bi962170n PubMed DOI
Ballikaya P., Mateos J.M., Brunner I. et al.: Detection of silver nanoparticles inside leaf of European beech (Fagus sylvatica L.). – Front. Environ. Sci. 10: 1107005, 2023. 10.3389/fenvs.2022.1107005 DOI
Barja P.R., Mansanares A.M., Da Silva E.C. et al.: A photosynthetic induction in Eucalyptus urograndis seedlings and cuttings measured by an open photoacoustic cell. – Photosynthetica 39: 489-495, 2001. 10.1023/A:1015687525198 DOI
Barkataki M.P., Singh T.: Plant-nanoparticle interactions: Mechanisms, effects, and approaches. – In: Verma S.K., Das A.K. (ed.): Comprehensive Analytical Chemistry. Vol. 87. Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability. Pp. 55-83. Elsevier, Amsterdam: 2019. 10.1016/bs.coac.2019.09.007 DOI
Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 2nd Edition. Pp. 312. Wiley Blackwell, Chichester: 2014.
Buschmann C.: Thermal dissipation related to chlorophyll fluorescence and photosynthesis. – Bulg. J. Plant Physiol. 25: 77-88, 1999. http://bio21.bas.bg/ipp/gapbfiles/v-25/99_3-4_77-88.pdf
Curien G., Flori S., Villanova V. et al.: The water to water cycles in microalgae. – Plant Cell Physiol. 57: 1354-1363, 2016. 10.1093/pcp/pcw048 PubMed DOI
Du J., Liu B., Zhao T. et al.: Silica nanoparticles protect rice against biotic and abiotic stresses. – J. Nanobiotechnol. 20: 197, 2022. 10.1186/s12951-022-01420-x PubMed DOI PMC
El-Shetehy M., Moradi A., Maceroni M. et al.: Silica nanoparticles enhance disease resistance in Arabidopsis plants. – Nat. Nanotechnol. 16: 344-353, 2021. 10.1038/s41565-020-00812-0 PubMed DOI PMC
Fraire-Velázquez S., Balderas-Hernández V.E.: Abiotic stress in plants and metabolic responses. – In: Vahdati K., Leslie C. (ed): Abiotic Stress: Plant Responses and Applications in Agriculture. Pp. 25-48. InTech Open Science, New York: 2013. 10.5772/54859 DOI
Gordiichuk P., Coleman S., Zhang G. et al.: Augmenting the living plant mesophyll into a photonic capacitor. – Sci. Adv. 7: eabe9733, 2021. 10.1126/sciadv.abe9733 PubMed DOI PMC
Hagemeier M., Leuschner C.: Leaf and crown optical properties of five early-, mid- and late-successional temperate tree species and their relation to sapling light demand. – Forests 10: 925, 2019. 10.3390/f10100925 DOI
Hassan H., Alatawi A., Abdulmajeed A. et al.: Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. – Horticulturae 7: 16, 2021. 10.3390/horticulturae7020016 DOI
Janković N.Z., Plata D.L.: Engineered nanomaterials in the context of global element cycles. – Environ. Sci.-Nano 6: 2697-2711, 2019. 10.1039/C9EN00322C DOI
Johnson G.N.: Physiology of PSI cyclic electron transport in higher plants. – BBA-Bioenergetics 1807: 384-389, 2011. 10.1016/j.bbabio.2010.11.009 PubMed DOI
Lazár D., Niu Y., Nedbal L.: Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. – J. Exp. Bot. 73: 6380-6393, 2022. 10.1093/jxb/erac283 PubMed DOI PMC
Le V.N., Rui Y., Gui X. et al.: Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. – J. Nanobiotechnol. 12: 50, 2014. 10.1186/s12951-014-0050-8 PubMed DOI PMC
Li S., Liu J., Wang Y. et al.: Comparative physiological and metabolomic analyses revealed that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (Cucumis sativus L.). – Food Energ. Secur. 10: e269, 2021. 10.1002/fes3.269 DOI
Liu Y., Wang S., Wang Z. et al.: TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. – Nanomaterials 8: 95, 2018. 10.3390/nano8020095 PubMed DOI PMC
Lysenko V., Guo Y., Chugueva O.: Cyclic electron transport around photosystem II: mechanisms and methods of study. – Am. J. Plant Physiol. 12: 1-9, 2017. 10.3923/ajpp.2017.1.9 DOI
Lysenko V., Rajput V.D., Singh R.K. et al.: Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. – Physiol. Mol. Biol. Pla. 28: 2041-2056, 2022. 10.1007/s12298-022-01263-8 PubMed DOI PMC
Lysenko V., Varduny T.: High levels of anoxygenic photosynthesis revealed by dual-frequency Fourier photoacoustics in Ailanthus altissima leaves. – Funct. Plant Biol. 49: 573-586, 2022. 10.1071/FP21093 PubMed DOI
Malkin S.: The photoacoustic method in photosynthesis – monitoring and analysis of phenomena which lead to pressure changes following light excitation. – In: Amesz J., Hoff A.J. (ed.): Biophysical Techniques in Photosynthesis. Pp. 191-206. Springer, Dordrecht: 1996. 10.1007/0-306-47960-5_12 DOI
Malkin S.: Attenuation of the photobaric-photoacoustic signal in leaves by oxygen-consuming processes. – Israel J. Chem. 38: 261-268, 1998. 10.1002/ijch.199800029 DOI
Manzo S., Buono S., Rametta G. et al.: The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. – Environ. Sci. Pollut. R. 22: 15941-15951, 2015. 10.1007/s11356-015-4790-2 PubMed DOI
Munekage Y., Shikanai T.: Cyclic electron transport through photosystem I. – Plant Biotechnol. 22: 361-369, 2005. 10.5511/plantbiotechnology.22.361 DOI
Nawrocki W.J., Tourasse N.J., Taly A. et al.: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. – Annu. Rev. Plant Biol. 66: 49-74, 2015. 10.1146/annurev-arplant-043014-114744 PubMed DOI
Oguchi R., Onoda Y., Terashima I., Tholen D.: Leaf anatomy and function: including bioenergy and related processes. – In: Adams III W.W., Terashima I. (ed.): The Leaf: A Platform for Performing Photosynthesis. Pp. 97-139. Springer, Cham: 2018. 10.1007/978-3-319-93594-2_5 DOI
Parveen A., Siddiqui Z.A.: Impact of silicon dioxide nanoparticles on growth, photosynthetic pigments, proline, activities of defense enzymes and some bacterial and fungal pathogens of tomato. – Vegetos 35: 83-93, 2022. 10.1007/s42535-021-00280-4 DOI
Prasil О., Kolber Z., Berry J.A., Falkowski P.G.: Cyclic electron flow around photosystem II in vivo. – Photosynth. Res. 48: 395-410, 1996. 10.1007/BF00029472 PubMed DOI
Pshibytko N.L., Kalitukho L.N., Kabashnikova L.F.: Effects of high temperature and water deficit on photosystem II in Hordeum vulgare leaves of various ages. – Russ. J. Plant Physiol. 50: 44-51, 2003. 10.1023/A:1021932317144 DOI
Rajput V., Minkina T., Feizi M. et al.: Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. – Biology 10: 791, 2021. 10.3390/biology10080791 PubMed DOI PMC
Rastogi А., Tripathi D.K., Yadav S. et al.: Application of silicon nanoparticles in agriculture. – 3 Biotech 9: 90, 2019. 10.1007/s13205-019-1626-7 PubMed DOI PMC
Rochaix J.-D.: Regulation of photosynthetic electron transport. – BBA-Bioenergetics 1807: 375-383, 2011. 10.1016/j.bbabio.2010.11.010 PubMed DOI
Rumeau D., Peltier G., Cournac L.: Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. – Plant Cell Environ. 30: 1041-1051, 2007. 10.1111/j.1365-3040.2007.01675.x PubMed DOI
Schreiber U.: Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. – In: Papageorgiou G.C., Govindje G. (ed.): Chlorophyll a fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_11 DOI
Shariati F., Shirazi M.A.: Effect of SiO2 nanoparticles on chlorophyll, carotenoid and growth of green micro-algae Dunaliella salina. – Nanomed. Res. J. 4: 164-175, 2019. 10.22034/nmrj.2019.03.005 DOI
Slomberg D.L., Schoenfisch M.H.: Silica nanoparticle phytotoxicity to Arabidopsis thaliana. – Environ. Sci. Technol. 46: 10247-10254, 2012. 10.1021/es300949f PubMed DOI
Soares A.S., Driscoll S.P., Olmos E. et al.: Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. – New Phytol. 177: 186-198, 2008. 10.1111/j.1469-8137.2007.02218.x PubMed DOI
Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. – Ann. Bot.-London 126: 511-537, 2020. 10.1093/aob/mcz171 PubMed DOI PMC
Tian L., Shen J., Sun G. et al.: Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. – Environ. Sci. Technol. 54: 13137-13146, 2020. 10.1021/acs.est.0c03767 PubMed DOI
Wei C., Zhang Y., Guo J. et al.: Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. – J. Environ. Sci. 22: 155-160, 2010. 10.1016/S1001-0742(09)60087-5 PubMed DOI
Zahedi S.M., Moharrami F., Sarikhani S., Padervand M.: Selenium and silica nanostructure based recovery of strawberry plants subjected to drought stress. – Sci. Rep.-UK 10: 17672, 2020. 10.1038/s41598-020-74273-9 PubMed DOI PMC
Zare G., Diker N.Y., Arituluk Z.C., Tatli Çankaya I.I.: Chelidonium majus L. (Papaveraceae) morphology, anatomy and traditional medicinal uses in Turkey. – Istanbul J. Pharm. 51: 123-132, 2021. 10.26650/IstanbulJPharm.2020.0074 DOI
Zhang H., Zhao Y., Zhu J.-K.: Thriving under stress: how plants balance growth and the stress response. – Dev. Cell 55: 529-543, 2020. 10.1016/j.devcel.2020.10.012 PubMed DOI
Zhori A., Meco M., Brandl H., Bachofen R.: In situ chlorophyll fluorescence kinetics as a tool to quantify effects on photosynthesis in Euphorbia cyparissias by a parasitic infection of the rust fungus Uromyces pisi. – BMC Res. Notes 8: 698, 2015. 10.1186/s13104-015-1681-z PubMed DOI PMC