Excess energy and photosynthesis: responses to seasonal water limitations in co-occurring woody encroachers of the semi-arid Southern Great Plains
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651365
PubMed Central
PMC11558594
DOI
10.32615/ps.2023.018
PII: PS61285
Knihovny.cz E-zdroje
- Klíčová slova
- carbon cycling, drought avoider, drought tolerant, grasslands, nonphotochemical quenching, savannas,
- Publikační typ
- časopisecké články MeSH
Woody plant areal encroachment is pervasive throughout the Southern Great Plains, USA. The ability of woody plants to dissipate excess solar radiation - dynamically over the day and sustained periods without recovery overnight - is key for maintaining photosynthetic performance during dry stretches, but our understanding of these processes remains incomplete. Photosynthetic performance and energy dissipation were assessed for co-occurring encroachers on the karst Edwards Plateau (Juniperus ashei, Prosopis glandulosa, and Quercus fusiformis) under seasonal changes in water status. Only J. ashei experienced mild photoinhibition from sustained energy dissipation overnight while experiencing the lowest photochemical yields, minimal photosynthetic rates, and the highest dynamic energy dissipation rates at midday during the dry period - indicating susceptibility to photosynthetic downregulation and increased dissipation under future drought regimes. Neither other encroacher experienced sustained energy dissipation in the dry period, though P. glandulosa did experience marked reductions in photosynthesis, photochemical yields, and increased regulatory dynamic energy dissipation.
Department of Ecology and Conservation Biology Texas A and M University College Station TX 77843 USA
Department of Soil and Crop Sciences Texas A and M University College Station TX 77843 USA
Zobrazit více v PubMed
Abobatta W.F.: Drought adaptive mechanisms of plants – a review. – Adv. Agr. Environ. Sci. 2: 42-45, 2019. 10.30881/aaeoa.00022 DOI
Adams W.W., Zarter C.R., Mueh K.E. et al.: Energy dissipation and photoinhibition: a continuum of photoprotection. – In: Demmig-Adams B., Adams W.W., Matoo A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 49-64. Springer, Dordrecht: 2008. 10.1007/1-4020-3579-9_5 DOI
Ahlström A., Raupach M.R., Schurgers G. et al.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. – Science 348: 895-899, 2015. 10.1126/science.aaa1668 PubMed DOI
Ain-Lhout F., Díaz Barradas M.C., Zunzunegui M. et al.: Seasonal differences in photochemical efficiency and chlorophyll and carotenoid contents in six Mediterranean shrub species under field conditions. – Photosynthetica 42: 399-407, 2004. 10.1023/B:PHOT.0000046159.96228.49 DOI
Baquedano F.J., Castillo F.J.: Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. – Photosynthetica 45: 229-238, 2007. 10.1007/s11099-007-0037-x DOI
Barger N.N., Archer S.R., Campbell J.L. et al.: Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. – J. Geophys. Res.-Biogeo. 116: G00K07, 2011. 10.1029/2010JG001506 DOI
Barron-Gafford G.A., Scott R.L., Jenerette G.D. et al.: Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient. – Glob. Change Biol. 18: 1389-1400, 2012. 10.1111/j.1365-2486.2011.02599.x DOI
Bendevis M.A., Owens M.K., Heilman J.L., McInnes K.J.: Carbon exchange and water loss from two evergreen trees in a semiarid woodland. – Ecohydrology 3: 107-115, 2010. 10.1002/eco.100 DOI
Bihmidine S., Bryan N.M., Payne K.R. et al.: Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion. – Plant Biol. 12: 668-675, 2010. 10.1111/j.1438-8677.2009.00251.x PubMed DOI
Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. – Planta 170: 489-504, 1987. 10.1007/BF00402983 PubMed DOI
Choat B., Jansen S., Brodribb T.J. et al.: Global convergence in the vulnerability of forests to drought. – Nature 491: 752-755, 2012. 10.1038/nature11688 PubMed DOI
Cook B.I., Ault T.R., Smerdon J.E.: Unprecedented 21st century drought risk in the American Southwest and Central Plains. – Sci. Adv. 1: e1400082, 2015. 10.1126/sciadv.1400082 PubMed DOI PMC
Crawford M.: Refined soil data of the Texas A&M AgriLife Research Station at Sonora [Data file]. Conducted by Texas A&M Natural Resources Institute, 2017. Retrieved from: https://www.arcgis.com/home/item.html?id=893dbd17cf094aa1a10e6c61e8ada6d3, 2019.
Cregg B.M.: Leaf area estimation of mature foliage of Juniperus. – Forest Sci. 38: 61-67, 1992. 10.1093/forestscience/38.1.61 DOI
Demmig-Adams B., Adams W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. – Trends Plant Sci. 1: 21-26, 1996. 10.1016/S1360-1385(96)80019-7 DOI
Demmig-Adams B., Adams W.W.: An integrative approach to photoinhibition and photoprotection of photosynthesis. – Environ. Exp. Bot. 154: 1-3, 2018. 10.1016/j.envexpbot.2018.05.006 DOI
Duursma R.: Package ‘plantecophys’. R package version 1.4-4. Available at: https://cran.r-project.org/web/packages/plantecophys/index.html, 2019.
Eggemeyer K.D., Schwinning S.: Biogeography of woody encroachment: Why is mesquite excluded from shallow soils? – Ecohydrology 2: 81-87, 2009. 10.1002/eco.42 DOI
Elkington R.J., Rebel K.T., Heilman J.L. et al.: Species-specific water use by woody plants on the Edwards Plateau, Texas. – Ecohydrology 7: 278-290, 2014. 10.1002/eco.1344 DOI
Esteban R., Balaguer L., Manrique E. et al.: Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. – Photosynth. Res. 101: 77-88, 2009. 10.1007/s11120-009-9468-5 PubMed DOI
Esteban R., Barrutia O., Artetxe U. et al.: Internal and external factors affecting photosynthetic pigment composition in plants: A meta-analytical approach. – New Phytol. 206: 268-280, 2015. 10.1111/nph.13186 PubMed DOI
Fensham R.J., Fairfax R.J., Ward D.P.: Drought-induced tree death in savanna. – Glob. Change Biol. 15: 380-387, 2009. 10.1111/j.1365-2486.2008.01718.x DOI
Fernández-Marín B., García-Plazaola J.I., Hernández A., Esteban R.: Plant photosynthetic pigments: Methods and tricks for correct quantification and identification. – In: Sánchez-Moreiras A., Reigosa M. (ed.): Advances in Plant Ecophysiology Techniques. Pp. 29-51. Springer, Cham: 2018. 10.1007/978-3-319-93233-0_3 DOI
Fernández-Marín B., Hernández A., Garcia-Plazaola J.I. et al.: Photoprotective strategies of Mediterranean plants in relation to morphological traits and natural environmental pressure: A meta-analytical approach. – Front. Plant Sci. 8: 1051, 2017. 10.3389/fpls.2017.01051 PubMed DOI PMC
Gałecki A., Burzykowski T.: Linear mixed-effects models using R. Springer, New York: 2013. 10.1007/978-1-4614-3900-4 DOI
Hall M.T.: Variation and hybridization in Juniperus. – Ann. Mo. Bot. Gard. 39: 1-64, 1952. 10.2307/2394490 DOI
Hendrickson L., Furbank R.T., Chow W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. – Photosynth. Res. 82: 73-81, 2004. 10.1023/B:PRES.0000040446.87305.f4 PubMed DOI
Jackson R.B., Moore L.A., Hoffmann W.A. et al.: Ecosystem rooting depth determined with caves and DNA. – PNAS 96: 11387-11392, 1999. 10.1073/pnas.96.20.11387 PubMed DOI PMC
Johnsen Jr. T.N.: Anatomy of scalelike leaves of Arizona junipers. – Bot. Gaz. 124: 220-224, 1963. 10.1086/336194 DOI
Johnson D.M., Berry Z.C., Baker K.V. et al.: Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. – Funct. Ecol. 32: 894-903, 2018a. 10.1111/1365-2435.13049 DOI
Johnson D.M., Domec J.C., Berry Z.C. et al.: Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. – Plant Cell Environ. 41: 576-588, 2018b. 10.1111/pce.13121 PubMed DOI
Klemm T., Briske D.D., Reeves M.C.: Vulnerability of rangeland beef cattle production to climate-induced NPP fluctuations in the US Great Plains. – Glob. Change Biol. 26: 4841-4853, 2020. 10.1111/gcb.15202 PubMed DOI
Knief U., Forstmeier W.: Violating the normality assumption may be the lesser of two evils. – Behav. Res. Method. 53: 2576-2590, 2021. 10.3758/s13428-021-01587-5 PubMed DOI PMC
Lazár D.: Parameters of photosynthetic energy partitioning. – J. Plant Physiol. 175: 131-147, 2015. 10.1016/j.jplph.2014.10.021 PubMed DOI
Lenth R.V., Buerkner P., Herve M. et al.: Package ‘emmeans’. R package version 1.4-8. Available at: https://cran.r-project.org/web/packages/emmeans/index.html, 2020.
Lichtenthaler H.K.: Chlorophyll and carotenoids: Pigments of biosynthetic compounds. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Liu N., Guan L.: Linkages between woody plant proliferation dynamics and plant physiological traits in southwestern North America. – J. Plant Ecol. 5: 407-416, 2012. 10.1093/jpe/rts002 DOI
Lombardini L., Rossi L.: Ecophysiology of plants in dry environments. – In: D'Odorico P., Porporato A., Wilkinson Runyan C. (ed.): Dryland Ecohydrology. Pp. 71-100. Springer, Cham: 2019. 10.1007/978-3-030-23269-6_4 DOI
Loriaux S.D., Avenson T.J., Welles J.M. et al.: Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. – Plant Cell Environ. 36: 1755-1770, 2013. 10.1111/pce.12115 PubMed DOI
Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. – Environ. Exp. Bot. 154: 123-133, 2018. 10.1016/j.envexpbot.2018.05.005 DOI
Martínez-Ferri E., Balaguer L., Valladares F. et al.: Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. – Tree Physiol. 20: 131-138, 2000. 10.1093/treephys/20.2.131 PubMed DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
McElrone A.J., Pockman W.T., Martinez-Vilalta J., Jackson R.B.: Variation in xylem structure and function in stems and roots of trees to 20 m depth. – New Phytol. 163: 507-517, 2004. 10.1111/j.1469-8137.2004.01127.x PubMed DOI
Meyer R.E., Morton H.L., Haas R.H. et al.: Morphology and anatomy of honey mesquite. Technical Bulletin No. 1423. Pp. 190. Agricultural Research Service, USDA, Washington: 1971. 10.22004/ag.econ.171851 DOI
Míguez F., Fernández-Marín B., Becerril J.M., García-Plazaola J.I.: Activation of photoprotective winter photoinhibition in plants from different environments: A literature compilation and meta-analysis. – Physiol. Plantarum 155: 414-423, 2015. 10.1111/ppl.12329 PubMed DOI
Moore G.W., Edgar C.B., Vogel J.G. et al.: Tree mortality from an exceptional drought spanning mesic to semiarid ecoregions. – Ecol. Appl. 26: 602-611, 2016. 10.1890/15-0330 PubMed DOI
Msanne J., Awada T., Bryan N.M. et al.: Ecophysiological responses of native invasive woody Juniperus virginiana L. to resource availability and stand characteristics in the semiarid grasslands of the Nebraska Sandhills. – Photosynthetica 55: 219-230, 2017. 10.1007/s11099-016-0683-y DOI
Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. – Plant Physiol. 125: 1558-1566, 2001. 10.1104/pp.125.4.1558 PubMed DOI PMC
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/jxb/ert208 PubMed DOI
Murchie E.H., Ruban A.V.: Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. – Plant J. 101: 885-896, 2020. 10.1111/tpj.14601 PubMed DOI
Owens M.K.: The role of leaf and canopy-level gas exchange in the replacement of Quercus virginiana (Fagaceae) by Juniperus ashei (Cupressaceae) in semiarid savannas. – Am. J. Bot. 83: 617-623, 1996. 10.1002/j.1537-2197.1996.tb12747.x DOI
Owens M.K., Schreiber M.C.: Seasonal gas exchange characteristics of two evergreen trees in a semiarid environment. – Photosynthetica 26: 389-398, 1992. https://kramerius.lib.cas.cz/view/uuid:0de0fa46-3363-4591-abe4-97e286dd6970?page=uuid:4fe4fe03-7ffb-4dda-a51c-2ee4d3dbfd69
Pinheiro J.C., Bates D.M.: Mixed-effects models in S and S-PLUS. Pp. 528. Springer, New York: 2000. 10.1007/b98882 DOI
Pinheiro J., Bates D., DebRoy S. et al.: nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148. Available at: https://CRAN.R-project.org/package=nlme, 2020.
Poulter B., Frank D., Ciais P. et al.: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. – Nature 509: 600-603, 2014. 10.1038/nature13376 PubMed DOI
Schielzeth H., Dingemanse N.J., Nakagawa S. et al.: Robustness of linear mixed-effects models to violations of distributional assumptions. – Method. Ecol. Evol. 11: 1141-1152, 2020. 10.1111/2041-210X.13434 DOI
Seager R., Feldman J., Lis N. et al.: Whither the 100th meridian? The once and future physical and human geography of America’s arid–humid divide. Part II: The meridian moves East. – Earth Interact. 22: 1-24, 2018. 10.1175/EI-D-17-0012.1 PubMed DOI
Seager R., Ting M., Held I. et al.: Model projections of an imminent transition to a more arid climate in Southwestern North America. – Science 316: 1181-1184, 2007. 10.1126/science.1139601 PubMed DOI
Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. – Remote Sens. Environ. 81: 337-354, 2002. 10.1016/S0034-4257(02)00010-X DOI
Strzepek K., Yohe G., Neumann J., Boehlert B.: Characterizing changes in drought risk for the United States from climate change. – Environ. Res. Lett. 5: 044012, 2010. 10.1088/1748-9326/5/4/044012 DOI
Thurow T.L., Hester J.W.: Holistic perspective, rangeland hydrology and wildlife considerations in juniper management: How an increase or reduction in juniper cover alters rangeland hydrology. – In: Taylor C.A. (ed.): Proceedings of 1997 Juniper Symposium, Texas Agricultural Experiment Station Technical Report 97-1. Pp. 9-22. Texas A&M University Research and Extension Center, Sonora: 1997.
Thyroff E.C., Burney O.T., Mickelbart M.V., Jacobs D.F.: Unraveling shade tolerance and plasticity of semi-evergreen oaks: Insights from maritime forest live oak restoration. – Front. Plant Sci. 10: 1526, 2019. 10.3389/fpls.2019.01526 PubMed DOI PMC
Turner N.C.: Measurement of plant water status by the pressure chamber technique. – Irrigation Sci. 9: 289-308, 1988. 10.1007/BF00296704 DOI
Van Auken O.W.: Causes and consequences of woody plant encroachment into western North American grasslands. – J. Environ. Manage. 90: 2931-2942, 2009. 10.1016/j.jenvman.2009.04.023 PubMed DOI
Verhoeven A.: Sustained energy dissipation in winter evergreens. – New Phytol. 201: 57-65, 2014. 10.1111/nph.12466 DOI
Verhoeven A., García-Plazaola J.I., Fernández-Marín B.: Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. – Environ. Exp. Bot. 154: 66-79, 2018. 10.1016/j.envexpbot.2017.09.012 DOI
Wei L., Xu C., Jansen S. et al.: A heuristic classification of woody plants based on contrasting shade and drought strategies. – Tree Physiol. 39: 767-781, 2019. 10.1093/treephys/tpy146 PubMed DOI
Wellburn A.R.: The spectral determinations of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. – J. Plant Physiol. 144: 307-313, 1994. 10.1016/S0176-1617(11)81192-2 DOI
Werner C., Correia O., Beyschlag W.: Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. – Funct. Plant Biol. 29: 999-1011, 2002. 10.1071/PP01143 PubMed DOI
Western Regional Climate Center (WRCC).: Sonora, TX: Total of precipitation (inches). Available at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?tx8449, 2020.
Wilson T.B., Webb R.H., Thompson T.L.: Mechanisms of range expansion and removal of mesquite in desert grasslands of the Southwestern United States. Rocky Mountain Research Station General Technical Report 81. Pp. 28. U.S. Department of Agriculture, Forest Service, 2001. 10.2737/RMRS-GTR-81 DOI