Sleep profiles and their associations with adiposity and cardiorespiratory fitness among adolescents
Language English Country Norway Media print-electronic
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004583
European Union
IGA_FTK_2023_001
Palacký University Olomouc
APVV-22-0078
APVV
APVV-18-0070
APVV
22-02392S
Czech Science Foundation
1/0179/21
VEGA
PubMed
39651909
PubMed Central
PMC12066914
DOI
10.1111/apa.17537
Knihovny.cz E-resources
- Keywords
- 20‐metre shuttle run test, bioimpedance analysis, body composition, sleep duration, sleep problems,
- MeSH
- Adiposity * MeSH
- Child MeSH
- Cardiorespiratory Fitness * physiology MeSH
- Humans MeSH
- Adolescent MeSH
- Cross-Sectional Studies MeSH
- Sleep * physiology MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Slovakia MeSH
AIM: This study aimed to identify sleep profiles in a representative sample of Slovak adolescents and investigate their associations with adiposity indicators and cardiorespiratory fitness. METHODS: Data from the 2022 Health Behaviour in School-aged Children (HBSC) study conducted in Slovakia were analysed. Survey questions on sleep duration and problems from the entire HBSC sample (n = 8906) were used to identify sleep profiles. Associations with adiposity indicators and cardiorespiratory fitness were investigated in a subsample of 924 adolescents (average age 13.3 ± 1.48; 56.2% boys) who completed the HBSC survey, bioimpedance analysis, and 20-metre shuttle run test. RESULTS: Three sleep profiles were identified-optimal sleepers, optimal sleepers with sporadic sleep problems and poor sleepers. Crude models showed that poor sleepers had significantly higher body fat percentage and fat mass index, along with lower cardiorespiratory fitness, compared to optimal sleepers. After adjustment, only the association between sleep profiles and cardiorespiratory fitness remained significant. CONCLUSION: The observed associations between sleep profiles and cardiorespiratory fitness may help better target future intervention resources towards adolescents with low cardiorespiratory fitness levels.
Faculty of Medicine Comenius University Bratislava Slovakia
Faculty of Medicine Pavol Jozef Šafárik University Košice Slovakia
Faculty of Physical Culture Palacký University Olomouc Olomouc Czechia
Faculty of Sports University of Prešov Prešov Slovakia
Olomouc University Social Health Institute Palacký University Olomouc Olomouc Czechia
See more in PubMed
Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233‐243. doi:10.1016/j.sleh.2015.10.004 PubMed DOI
Ohayon M, Wickwire EM, Hirshkowitz M, et al. National Sleep Foundation's sleep quality recommendations: first report. Sleep Health. 2017;3(1):6‐19. doi:10.1016/j.sleh.2016.11.006 PubMed DOI
Chaput J, Janssen I. Sleep duration estimates of Canadian children and adolescents. J Sleep Res. 2016;25(5):541‐548. doi:10.1111/jsr.12410 PubMed DOI
Thumann BF, Börnhorst C, Michels N, et al. Cross‐sectional and longitudinal associations between psychosocial well‐being and sleep in European children and adolescents. J Sleep Res. 2019;28(2):e12783. doi:10.1111/jsr.12783 PubMed DOI
Verkooijen S, De Vos N, Bakker‐Camu BJW, et al. Sleep disturbances, psychosocial difficulties, and health risk behavior in 16,781 Dutch adolescents. Acad Pediatr. 2018;18(6):655‐661. doi:10.1016/j.acap.2018.03.003 PubMed DOI
Richter SA, Ferraz‐Rodrigues C, Schilling LB, Camargo NF, Nunes ML. Effects of the covid ‐19 pandemic on sleep quality in children and adolescents: a systematic review and meta‐analysis. J Sleep Res. 2023;32(1):e13720. doi:10.1111/jsr.13720 PubMed DOI PMC
Fobian AD, Elliott L, Louie T. A systematic review of sleep, hypertension, and cardiovascular risk in children and adolescents. Curr Hypertens Rep. 2018;20(5):42. doi:10.1007/s11906-018-0841-7 PubMed DOI PMC
Jiang W, Hu C, Li F, Hua X, Zhang X. Association between sleep duration and high blood pressure in adolescents: a systematic review and meta‐analysis. Ann Hum Biol. 2018;45(6–8):457‐462. doi:10.1080/03014460.2018.1535661 PubMed DOI
Dutil C, Walsh JJ, Featherstone RB, et al. Influence of sleep on developing brain functions and structures in children and adolescents: a systematic review. Sleep Med Rev. 2018;42:184‐201. doi:10.1016/j.smrv.2018.08.003 PubMed DOI
Norell‐Clarke A, Hagquist C. Child and adolescent sleep duration recommendations in relation to psychological and somatic complaints based on data between 1985 and 2013 from 11 to 15 year‐olds. J Adolesc. 2018;68(1):12‐21. doi:10.1016/j.adolescence.2018.07.006 PubMed DOI
Sun J, Wang M, Yang L, Zhao M, Bovet P, Xi B. Sleep duration and cardiovascular risk factors in children and adolescents: a systematic review. Sleep Med Rev. 2020;53:101338. doi:10.1016/j.smrv.2020.101338 PubMed DOI
Miller MA, Kruisbrink M, Wallace J, Ji C, Cappuccio FP. Sleep duration and incidence of obesity in infants, children, and adolescents: a systematic review and meta‐analysis of prospective studies. Sleep. 2018;41(4). doi:10.1093/sleep/zsy018 PubMed DOI
Li L, Zhang S, Huang Y, Chen K. Sleep duration and obesity in children: a systematic review and meta‐analysis of prospective cohort studies. J Paediatr Child Health. 2017;53(4):378‐385. doi:10.1111/jpc.13434 PubMed DOI
Chaput JP, Gray CE, Poitras VJ, et al. Systematic review of the relationships between sleep duration and health indicators in school‐aged children and youth. Appl Physiol Nutr Metab. 2016;41:S266‐S282. doi:10.1139/apnm-2015-0627 PubMed DOI
García‐Hermoso A, Aguilar MM, Vergara FA, Velásquez EJA, Marina R. Obesity, cardiorespiratory fitness, and self‐reported sleep patterns in Chilean school‐aged children. Behav Sleep Med. 2017;15(1):70‐80. doi:10.1080/15402002.2015.1083023 PubMed DOI
Fatima Y, Doi SAR, Mamun AA. Sleep quality and obesity in young subjects: a meta‐analysis. Obes Rev. 2016;17(11):1154‐1166. doi:10.1111/obr.12444 PubMed DOI
Moitra P, Madan J, Verma P. Independent and combined influences of physical activity, screen time, and sleep quality on adiposity indicators in Indian adolescents. BMC Public Health. 2021;21(1):2093. doi:10.1186/s12889-021-12183-9 PubMed DOI PMC
Fonseca APLM, Azevedo CVMD, Santos RMR. Sleep and health‐related physical fitness in children and adolescents: a systematic review. Sleep Sci. 2021;14(4):357‐365. doi:10.5935/1984-0063.20200125 PubMed DOI PMC
Mota J, Vale S. Associations between sleep quality with cardiorespiratory fitness and BMI among adolescent girls. American J Hum Biol. 2010;22(4):473‐475. doi:10.1002/ajhb.21019 PubMed DOI
Hannon TS, Arslanian SA. Obesity in adolescents. Solomon CG, ed. N Engl J Med. 2023;389(3):251‐261. doi:10.1056/NEJMcp2102062 PubMed DOI
García‐Hermoso A, Ramírez‐Vélez R, García‐Alonso Y, Alonso‐Martínez AM, Izquierdo M. Association of Cardiorespiratory Fitness Levels during Youth with Health Risk Later in life: a systematic review and meta‐analysis. JAMA Pediatr. 2020;174(10):952‐960. doi:10.1001/jamapediatrics.2020.2400 PubMed DOI PMC
Poorolajal J, Sahraei F, Mohamdadi Y, Doosti‐Irani A, Moradi L. Behavioral factors influencing childhood obesity: a systematic review and meta‐analysis. Obes Res Clin Pract. 2020;14(2):109‐118. doi:10.1016/j.orcp.2020.03.002 PubMed DOI
Narciso J, Silva AJ, Rodrigues V, et al. Behavioral, contextual and biological factors associated with obesity during adolescence: a systematic review. PLoS One. 2019;14(4):e0214941. doi:10.1371/journal.pone.0214941 PubMed DOI PMC
Sawyer SM, Afifi RA, Bearinger LH, et al. Adolescence: a foundation for future health. Lancet. 2012;379(9826):1630‐1640. doi:10.1016/S0140-6736(12)60072-5 PubMed DOI
Gebremariam MK, Lien N, Nianogo RA, Arah OA. Mediators of socioeconomic differences in adiposity among youth: a systematic review. Obes Rev. 2017;18(8):880‐898. doi:10.1111/obr.12547 PubMed DOI
Cronin FM, Hurley SM, Buckley T, et al. Mediators of socioeconomic differences in overweight and obesity among youth in Ireland and the UK (2011–2021): a systematic review. BMC Public Health. 2022;22(1):1585. doi:10.1186/s12889-022-14004-z PubMed DOI PMC
Paruthi S, Brooks LJ, D'Ambrosio C, et al. Consensus statement of the American Academy of sleep medicine on the recommended amount of sleep for healthy children: methodology and discussion. J Clin Sleep Med. 2016;12(11):1549‐1561. doi:10.5664/jcsm.6288 PubMed DOI PMC
Chen Y, Zhang B. Latent classes of sleep quality and related predictors in older adults: a person‐centered approach. Arch Gerontol Geriatr. 2022;102:104736. doi:10.1016/j.archger.2022.104736 PubMed DOI
Miranda VPN, Coimbra DR, Bastos RR, Miranda Júnior MV, Amorim PRDS. Use of latent class analysis as a method of assessing the physical activity level, sedentary behavior and nutritional habit in the adolescents' lifestyle: a scoping review. PLoS One. 2021;16(8):e0256069. doi:10.1371/journal.pone.0256069 PubMed DOI PMC
Liberali R, Del Castanhel F, Kupek E, Assis MAAD. Latent class analysis of lifestyle risk factors and association with overweight and/or obesity in children and adolescents: systematic review. Child Obes. 2021;17(1):2‐15. doi:10.1089/chi.2020.0115 PubMed DOI
Lanza ST, Rhoades BL. Latent class analysis: an alternative perspective on subgroup analysis in prevention and treatment. Prev Sci. 2013;14(2):157‐168. doi:10.1007/s11121-011-0201-1 PubMed DOI PMC
Costa RM, Minatto G, Costa BGG, Silva KS. Clustering of 24‐h movement behaviors associated with cardiorespiratory fitness among adolescents: a latent class analysis. Eur J Pediatr. 2021;180(1):109‐117. doi:10.1007/s00431-020-03719-z PubMed DOI
Sawyer E, Heussler H, Gunnarsson R. Defining short and long sleep duration for future paediatric research: a systematic literature review. J Sleep Res. 2019;28(6):e12839. doi:10.1111/jsr.12839 PubMed DOI
Tomkinson GR, Lang JJ, Blanchard J, Léger LA, Tremblay MS. The 20‐m shuttle run: assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatr Exerc Sci. 2019;31(2):152‐163. doi:10.1123/pes.2018-0179 PubMed DOI
Gonçalves VSS, Faria ERD, Franceschini SDCC, Priore SE. Predictive capacity of different bioelectrical impedance analysis devices, with and without protocol, in the evaluation of adolescents. J Pediatr. 2013;89(6):567‐574. doi:10.1016/j.jped.2013.03.023 PubMed DOI
De Onis M. Development of a WHO growth reference for school‐aged children and adolescents. Bull World Health Organ. 2007;85(9):660‐667. doi:10.2471/BLT.07.043497 PubMed DOI PMC
Hartley JEK, Levin K, Currie C. A new version of the HBSC family affluence scale ‐ FAS III: Scottish qualitative findings from the international FAS development study. Child Indic Res. 2016;9(1):233‐245. doi:10.1007/s12187-015-9325-3 PubMed DOI PMC
Cirino PT, Chin CE, Sevcik RA, Wolf M, Lovett M, Morris RD. Measuring socioeconomic status: reliability and preliminary validity for different approaches. Assessment. 2002;9(2):145‐155. doi:10.1177/10791102009002005 PubMed DOI
Prochaska JJ, Sallis JF, Long B. A physical activity screening measure for use with adolescents in primary care. Arch Pediatr Adolesc Med. 2001;155(5):554. doi:10.1001/archpedi.155.5.554 PubMed DOI
Weller BE, Bowen NK, Faubert SJ. Latent class analysis: a guide to best practice. J Black Psychol. 2020;46(4):287‐311. doi:10.1177/0095798420930932 DOI
Nylund‐Gibson K, Choi AY. Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science. 2018;4(4):440‐461. doi:10.1037/tps0000176 DOI
Bakk Z, Kuha J. Relating latent class membership to external variables: an overview. Brit J Math & Statis. 2021;74(2):340‐362. doi:10.1111/bmsp.12227 PubMed DOI PMC
Matricciani L, Paquet C, Fraysse F, Wake M, Olds T. Sleep profiles of Australian children aged 11–12 years and their parents: sociodemographic characteristics and lifestyle correlates. Sleep Med. 2020;73:53‐62. doi:10.1016/j.sleep.2020.04.017 PubMed DOI
Magee CA, Blunden S. Sleep timing during adolescence: a latent transition analysis approach. Behav Sleep Med. 2020;18(1):131‐146. doi:10.1080/15402002.2018.1546180 PubMed DOI
Neikrug AB, Radom‐Aizik S, Chen IY, et al. 0325 better aerobic fitness is associated with distinct sleep characteristics in children and adolescents ‐ a pilot study. Sleep. 2020;43(Supplement_1):A123‐A124:A123‐A124. doi:10.1093/sleep/zsaa056.322 DOI
Vazquez CE, Cubbin C. Socioeconomic status and childhood obesity: a review of literature from the past decade to inform intervention research. Curr Obes Rep. 2020;9(4):562‐570. doi:10.1007/s13679-020-00400-2 PubMed DOI
Jo Y, Wang Q. The impact of maternal employment on children's adiposity: evidence from China's labor policy reform. Health Econ. 2017;26(12):e236‐e255. doi:10.1002/hec.3498 PubMed DOI
Sigmundova D, Sigmund E, Hamrik Z, Kalman M. Trends of overweight and obesity, physical activity and sedentary behaviour in Czech schoolchildren: HBSC study. The European Journal of Public Health. 2014;24(2):210‐215. doi:10.1093/eurpub/ckt085 PubMed DOI PMC
Jiménez‐Pavón D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. 2010;5(1):3‐18. doi:10.3109/17477160903067601 PubMed DOI
Karchynskaya V, Kopcakova J, Klein D, et al. Is BMI a valid indicator of overweight and obesity for adolescents? Int J Environ Res Public Health. 2020;17(13):4815. doi:10.3390/ijerph17134815 PubMed DOI PMC
Kang J, Ratamess NA, Faigenbaum AD, et al. Time‐of‐day effects of exercise on cardiorespiratory responses and endurance performance‐a systematic review and meta‐analysis. J Strength Cond Res. 2023;37:2080‐2090. doi:10.1519/JSC.0000000000004497 PubMed DOI
Hahs‐Vaughn DL, McWayne CM, Bulotsky‐Shearer RJ, Wen X, Faria A‐M. Methodological considerations in using complex survey data: an applied example with the head start family and child experiences survey. Eval Rev. 2011;35:269‐303. doi:10.1177/0193841X11412071 PubMed DOI