Impacts of accelerating agricultural R&D transfer on global food security
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39653389
PubMed Central
PMC11633200
DOI
10.1080/21645698.2024.2438419
Knihovny.cz E-zdroje
- Klíčová slova
- Agricultural R&D transfer, computable general equilibrium model, cost of delay, genome editing, global food security,
- MeSH
- editace genu ekonomika MeSH
- lidé MeSH
- výzkum ekonomika trendy MeSH
- zajištění potravin * ekonomika MeSH
- zásobování potravinami ekonomika MeSH
- zemědělské plodiny genetika růst a vývoj ekonomika MeSH
- zemědělství * ekonomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Postponing the adoption of genome editing (GE) is costly, with lengthy regulatory processes contributing to postponement. Accelerating agricultural research and development (R&D) transfer is important for stimulating sustainable agricultural transitions and enhancing global food security. Using the MAGNET model, we incorporate dynamic R&D accumulation and compare economic projections in scenarios with accelerated R&D transfer. We calculate the cost of delay (COD) from postponing GE adoption. The results show that accelerating R&D transfer in high-income countries impacts economic performance, welfare, and food affordability globally; the annuity of COD ranges from losses of -$1.1 billion (Brazil) to gains of $18.5 billion (Europe). A 3-year acceleration of R&D transfer in all countries benefits middle and low-income countries the most (e.g. China, India, other Asian countries, and Sub-Saharan African countries), with the annuity of COD ranging from -$4.8 billion (Brazil) to $83.9 billion (China). Therefore, streamlining the GE regulatory framework is essential for enhancing food security and global welfare.
Agricultural Economics and Rural Policy Group Wageningen University Wageningen Netherlands
Department of International Policy Wageningen Economic Research The Hague Netherlands
Faculty of Economics and Management Czech University of Life Sciences Prague Czech Republic
Zobrazit více v PubMed
Audretsch DB, Belitski M.. The role of R&D and knowledge spillovers in innovation and productivity. Eur Econ Rev. 2020;123:103391. doi:10.1016/j.euroecorev.2020.103391. DOI
Osaulenko O, Yatsenko О, Reznikova N, Rusak D, Nitsenko V.. The productive capacity of countries through the prism of sustainable development goals: challenges to international economic security and to competitiveness. Financial Credit Activity Problems Theory Practice. 2020;2(33):492–99. doi:10.18371/fcaptp.v2i33.207214. DOI
Trigo E, Chavarria H, Pray C, Smyth SJ, Torroba A, Wesseler J, Zilberman D, Martinez JF. The bioeconomy and food system transformation. Sci Innovations Food Syst Transform. 2023;2:849–68.
Doudna J, Sternberg S. A crack in creation: the new power to control evolution. (NY): Random House; 2017.
Food and Agriculture Organization (FAO) . Gene editing and agrifood systems. 2022, doi:10.4060/cc3579en. DOI
Brookes G, Smyth SJ. Risk-appropriate regulations for gene-editing technologies. GM Crops & Food. 2024;15(1):1–4. doi:10.1080/21645698.2023.2293510. PubMed DOI PMC
Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Smyth S, Wesseler J, Whelan A. A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol. 2019;222(4):1673–84. doi:10.1111/nph.15627. PubMed DOI
Huffman W. New insights on the impacts of public agricultural research and extension on agricultural productivity: evidence from the United States. Cuyonomics Investigaciones en Economía Reg. 2017;1(1):39–49.
Kristkova ZS, Gardebroek C, Van Dijk M, Van Meijl H. The impact of R&D on factor-augmenting technical change – an empirical assessment at the sector level. Econ Syst Res. 2017;29(3):385–417. doi:10.1080/09535314.2017.1316707. DOI
Huffman WE, Evenson RE. Do formula or competitive grant funds have greater impacts on state agricultural productivity? Am J Agric Econ. 2006;88(4):783–98. doi:10.1111/j.1467-8276.2006.00898.x. DOI
Wang SL, Heisey PW, Huffman WE, Fuglie KO. Public R&D, private R&D, and US agricultural productivity growth: dynamic and long-run relationships. Am J Agri Econ. 2013;95(5):1287–93. doi:10.1093/ajae/aat032. DOI
Purnhagen K, Wesseler J. EU regulation of new plant breeding technologies and their possible economic implications for the EU and beyond. Appl Eco Perspectives Pol. 2021;43(4):1621–37. doi:10.1002/aepp.13084. DOI
Alston JM, Pardey PG, Serfas D, Wang S. Slow magic: agricultural versus industrial R&D lag models. Annu Rev Resource Econ. 2023;15(1):471–93. doi:10.1146/annurev-resource-111820-034312. DOI
Kalaitzandonakes N, Willig C, Zahringer K. The economics and policy of genome editing in crop improvement. Plant Genome. 2023;16(2):e20248. doi:10.1002/tpg2.20248. PubMed DOI
German Research Foundation . Debureaucratization and standardization of the enforcement of genetic engineering law for genetic engineering work at safety level S1. [Date accessed: 2024 Oct 6]. (in German). https://www.dfg.de/resource/blob/337150/ff49f9c67aef91ef8bce10259eb17789/sk-genforschung-gentechnikrecht-data.pdf.
Biden S, Smyth SJ, Hudson D. The economic and environmental cost of delayed GM crop adoption: the case of Australia’s GM canola moratorium. GM Crops & Food. 2018;9(1):13–20. doi:10.1080/21645698.2018.1429876. PubMed DOI PMC
Brookes G, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996-2016: impacts on pesticide use and carbon emissions. GM Crops & Food. 2018;9(3):109–39. doi:10.1080/21645698.2018.1476792. PubMed DOI PMC
Jin Y, Drabik D, Heerink N, Wesseler J. The cost of postponement of bt rice commercialization in China. Front Plant Sci. 2019;10:1226. doi:10.3389/fpls.2019.01226. PubMed DOI PMC
Stein AJ, Sachdev HP, Qaim M. Genetic engineering for the poor: Golden Rice and public health in India. World Devel. 2008;36(1):144–58. doi:10.1016/j.worlddev.2007.02.013. DOI
Wesseler J, Smart RD, Thomson J, Zilberman D. Foregone benefits of important food crop improvements in Sub-Saharan Africa. PLOS ONE. 2017;12(7):e0181353. doi:10.1371/journal.pone.0181353. PubMed DOI PMC
Alston JM, Pardey PG. Agricultural R&D and food security of the poor. Econ Papers: J Appl Econ Policy. 2013;32(3):289–97. doi:10.1111/1759-3441.12048. DOI
Bishwajit G. Promoting agricultural research and development to strengthen food security in South Asia. Int J Agron. 2014;1:1–6. doi:10.1155/2014/589809. DOI
Kristkova ZS, Van Dijk M, Van Meijl H. Assessing the impact of agricultural R&D investments on long-term projections of food security. World Agric Resour Food Secur. 2017;17:1–17.
Lee J, Koh M, Jeong G. Analysis of the impact of agricultural R&D investment on food security. Appl Econ Lett. 2017;24(1):49–53. doi:10.1080/13504851.2016.1161708. DOI
Frank S, Havlík P, Stehfest E, Van Meijl H, Witzke P, Pérez-Domínguez I, Van Dijk M, Doelman JC, Fellmann T, Koopman JF, et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat Clim Change. 2019;9(1):66–72. doi:10.1038/s41558-018-0358-8. DOI
Kuiper M, Cui HD. Using food loss reduction to reach food security and environmental objectives–a search for promising leverage points. Food Policy. 2021;98:101915. doi:10.1016/j.foodpol.2020.101915. DOI
Kuiper M, Shutes L, Van Meijl H, Oudendag D, Tabeau A. Labor supply assumptions-a missing link in food security projections. Global Food Secur. 2020;25:100328. doi:10.1016/j.gfs.2019.100328. DOI
Van Meijl H, Tabeau A, Stehfest E, Doelman J, Lucas P. How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environ Res Commun. 2020;2(3):031002. doi:10.1088/2515-7620/ab7aba. DOI
Woltjer GB, Kuiper M, Kavallari A, van Meijl H, Powell JP, Rutten MM, Shutes LJ, Tabeau AA. The MAGNET model: module description. Wageningen, the Netherlands: LEI; 2014. Available at: The MAGNET Model: Module description (accessed on November 26).
Garcia‐Alonso M, Novillo C, Kostolaniova P, Martinez Parrilla M, Alcalde E, Podevin N. The EU’s GM crop conundrum: did the EU policy strategy to convert EFSA GMO guidance into legislation deliver on its promises? EMBO Rep. 2022;23(5):e54529. doi:10.15252/embr.202154529. PubMed DOI PMC
Gbashi S, Adebo O, Adebiyi JA, Targuma S, Tebele S, Areo OM, Olopade B, Odukoya JO, Njobeh P. Food safety, food security and genetically modified organisms in Africa: a current perspective. Biotechnol Genetic Eng Rev. 2021;37(1):30–63. doi:10.1080/02648725.2021.1940735. PubMed DOI
Kristkova ZS, Van Dijk M, Van Meijl H. Projections of long-term food security with R&D driven technical change—a CGE analysis. NJAS-Wageningen J Life Sci. 2016;77:39–51. doi:10.1016/j.njas.2016.03.001. DOI
Mmbando GS. The legal aspect of the current use of genetically modified organisms in Kenya, Tanzania, and Uganda. GM Crops & Food. 2023;14(1):1–12. doi:10.1080/21645698.2023.2208999. PubMed DOI PMC
Yankelevich A, Mcgrath C. Agricultural biotechnology annual. United States Department of Agriculture; 2023. [Date accessed 2024 Sep 26]. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Agricultural%20Biotechnology%20AnnualBuenos%20AiresArgentinaAR2023-0016.
Aguiar A, Chepeliev M, Corong EL, McDougall R, van der Mensbrugghe D. The GTAP data base: version 10. J Global Econ Anal. 2019;4(1):1–27. doi:10.21642/JGEA.040101AF. DOI
The MAGNET team . MAGNET model. [Date accessed: 2024 Oct 26]. https://www.magnet-model.eu/model/.
Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Change. 2017;42:153–68. doi:10.1016/j.gloenvcha.2016.05.009. DOI
O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ Change. 2017;42:169–80. doi:10.1016/j.gloenvcha.2015.01.004. DOI
Doelman JC, Stehfest E, Tabeau A, van Meijl H. Making the Paris agreement climate targets consistent with food security objectives. Global Food Secur. 2019;23:93–103. doi:10.1016/j.gfs.2019.04.003. DOI
Van Dijk M, Meijerink G. A review of global food security scenario and assessment studies: results, gaps and research priorities. Global Food Secur. 2014;3(3–4):227–38. doi:10.1016/j.gfs.2014.09.004. DOI
Van Meijl H, Shutes L, Valin H, Stehfest E, van Dijk M, Kuiper M, Tabeau A, van Zeist WJ, Hasegawa T, Havlik P. Modelling alternative futures of global food security: insights from FOODSECURE. Global Food Secur. 2020;25:100358. doi:10.1016/j.gfs.2020.100358. DOI
Andersen MA Knowledge productivity and the returns to agricultural research: a review. Australian J Agric and Resource Econ. 2019;63(2):205–20.
Alston JM, Andersen MA, James JS, Pardey PG. The economic returns to US public agricultural research. Am J Agric Econ. 2011;93(5):1257–77. doi:10.1093/ajae/aar044. DOI
Jin Y, Drabik D, Heerink N, Wesseler J. Getting an imported GM crop approved in China. Trends Biotechnol. 2019;37(6):566–69. doi:10.1016/j.tibtech.2019.02.004. PubMed DOI
Stein AJ, Sachdev HPS, Qaim M. Potential impact and cost-effectiveness of golden rice. Nat Biotechnol. 2006;24(10):1200–01. doi:10.1038/nbt1006-1200b. PubMed DOI
Von Braun J, Hendriks SL. Full‐cost accounting and redefining the cost of food: implications for agricultural economics research. Agric Econ. 2023;54(4):451–54. doi:10.1111/agec.12774. DOI
Wesseler J, Zilberman D. The economic power of the golden rice opposition. Envir Dev Econ. 2014;19(6):724–42. doi:10.1017/S1355770X1300065X. DOI
Zimmermann R, Qaim M. Potential health benefits of golden rice: a Philippine case study. Food Policy. 2004;29(2):147–68. doi:10.1016/j.foodpol.2004.03.001. DOI
Klümper W, Qaim M, Albertini E. A meta-analysis of the impacts of genetically modified crops. PLOS ONE. 2014;9(11):e111629. doi:10.1371/journal.pone.0111629. PubMed DOI PMC
The European Court of Justice . Judgment of the court (grand chamber) of 25 July 2018. Document 62016CA0528. 2018. [Date accessed 2024 Sep 26]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62016CA0528.
Purnhagen KP, Kok E, Kleter G, Schebesta H, Visser RG, Wesseler J. EU court casts new plant breeding techniques into regulatory limbo. Nat Biotechnol. 2018;36(9):799–800. doi:10.1038/nbt.4251. PubMed DOI
European Commission . Study on the status of new genomic techniques under union law and in light of the court of justice ruling in case C-528/16. 2021. [accessed on 2024 Nov 26]. https://food.ec.europa.eu/document/download/5135278b-3098-4011-a286-a316209c01cd_en?filename=gmo_mod-bio_ngt_eu-study.pdf.
European Commission . Proposal for a regulation of the European parliament and of the council on plants obtained by certain new genomic techniques and their food and feed, and amending regulation (EU) 2017/625. 2023/0226. [accessed on 2024 Nov 26]. https://food.ec.europa.eu/document/download/c03805a6-4dcc-42ce-959c-e4d609010fa3_en?filename=gmo_biotech_ngt_proposal_2023-411_en.pdf.