Enhancing Stability of Microwave-Synthesized Cs2SnxTi1-xBr6 Perovskite by Cation Mixing

. 2025 May 05 ; 18 (9) : e202402073. [epub] 20241219

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39655369

Grantová podpora
CIPROM/2021/078 Conselleria d'Educació, Investigació, Cultura i Esport
2021/43/P/ST5/01780 Narodowe Centrum Nauki
945339 H2020 Marie Skłodowska-Curie Actions

The double-perovskite material Cs2TiBr6 shows excellent photovoltaic potential, making it a promising alternative to lead-based materials. However, its high susceptibility to degradation in air has raised concerns about its practical application. This study introduces an interesting synthesis approach that significantly enhances the stability of Cs2TiBr6 powder. We implemented a gradual cation exchange process by substituting Ti4+ with Sn4+ in the efficient microwave-assisted synthesis method, developing a double perovskite Cs2SnxTi1-xBr6 type. A systematic study of increasing concentration of Sn4+ in Cs2TiBr6 perovskite has been performed to analyze the effect of Sn-doping degree on the chemical and thermal stability of the material and the optical features in both nitrogen and ambient atmospheres, significantly increasing the stability of the material in the air for over a week. Furthermore, introducing Sn4+ results in a more uniform polygonal crystal morphology of the powders and a slight band gap broadening. We show that microwave-assisted synthesis is highly efficient and cost-effective in producing more sustainable lead-free perovskite materials with enhanced stability and desirable electrical characteristics. This work suggests a promising method for synthesizing perovskite materials, opening new routes for scientific research and applications.

Zobrazit více v PubMed

Abate A., ACS Energy Lett. 2023, 8, 1896–1899. PubMed PMC

Kuan C. H., Balasaravanan R., Hsu S. M., Ni J. S., Tsai Y. T., Zhang Z. X., Chen M. C., Diau E. W., Adv. Mater. 2023, 35, e2300681. PubMed

Sun C., Yang P., Nan Z., Tian C., Cai Y., Chen J., Qi F., Tian H., Xie L., Meng L., Wei Z., Adv. Mater. 2023, 35, e2205603. PubMed

Ren M., Qian X., Chen Y., Wang T., Zhao Y., J. Hazard Mater. 2022, 426, 127848. PubMed

Schileo G., Grancini G., J. Mater. Chem. C 2021, 9, 67–76.

Chetyrkina M. R., Kameneva L., Mishchenko D. V., Klimanova E. N., Sashenkova T. E., Allayarova U. Y., Kostyuk S. V., Frolova L. A., Aldoshin S. M., Troshin P. A., Sol. Energy Mat. Sol. C 2023, 252, 112177.

Chen C. H., Cheng S. N., Cheng L., Wang Z. K., Liao L. S., Adv. Energy Mater. 2023, 13, 2204144.

Zuraw W., Vinocour Pacheco F. A., Sanchez-Diaz J., Przypis L., Mejia Escobar M. A., Almosni S., Vescio G., Martinez-Pastor J. P., Garrido B., Kudrawiec R., Mora-Sero I., Oz S., ACS Energy Lett. 2023, 8, 4885–4887. PubMed PMC

López-Fernández I., Wang C.-Y., Samanta S., Okamoto T., Huang Y.-T., Sun K., Liu Y., Chirvony V. S., Patra A., Zito J., De Trizio L., Gaur D., Sun H.-T., Xia Z., Li X., Zeng H., Mora-Seró I., Pradhan N., Martínez-Pastor J. P., Müller-Buschbaum P., Biju V., Debnath T., Saliba M., Debroye E., Hoye R. L. Z., Infante I., Manna L., Polavarapu L., Adv. Funct. Mater. 2023, 2307896.

Sekar K., Marasamy L., Mayarambakam S., Hawashin H., Nour M., Boucle J., RSC Adv. 2023, 13, 25483–25496. PubMed PMC

Chen X., Jia M. C., Xu W., Pan G. C., Zhu J. Y., Tian Y. T., Wu D., Li X. J., Shi Z. F., Adv. Opt. Mater. 2023, 11, 2202153.

Zhu Y., Hu X. R., Zheng G. Y., Wei X. P., He J., Wang J. L., Lin B. C., Yao D. S., Tian N., Mo S. Y., Long F., J. Electron. Mater. 2023, 52, 5554–5563.

Chen M., Ju M. G., Carl A. D., Zong Y. X., Grimm R. L., Gu J. J., Zeng X. C., Zhou Y. Y., Padture N. P., Joule 2018, 2, 558–570.

Liga M., Konstantatos G., Journal of Materials Chemistry C 2021, 9, 11098–11103. PubMed PMC

Ju M. G., Chen M., Zhou Y. Y., Garces H. F., Dai J., Ma L., Padture N. P., Zeng X. C., ACS Energy Lett. 2018, 3, 297–304.

Ayyaz A., Murtaza G., Usman A., Umer M., Shah M. Q., Ali H. S., Mat Sci Semicon Proc 2024, 169, 107910.

Shi M., Fu P., Tian W., Chi H., Li C., Li R., Small Methods 2024, 8, e2300405. PubMed

Mi X., Pan J., Zhang Y. R., Liu Y. X., Mu G., Yang P. Z., Qin P., Huang F. Q., Mat. Sci. Semicon. Proc. 2023, 165, 107652.

He J. Z., Hu X. D., Liu Z. H., Chen W., Longo G., Adv. Funct. Mater. 2023, 33, 2306075.

Levy S., Khalfin S., Pavlopoulos N. G., Kauffmann Y., Atiya G., Shaek S., Dror S., Shechter R., Bekenstein Y., Chem. Mater. 2021, 33, 2370–2377. PubMed PMC

Mercy P. A. M., Wilson K. S. J., Appl. Surf. Sci. Adv. 2023, 15, 100394.

Zhou J., Wu D., Tian C., Liang Z., Ran H., Gao B., Luo Z., Huang Q., Tang X., Small 2023, 19, e2207915. PubMed

Aslam S., Bakhsh S., Yusof Y., Rahman M. Y. A., Ibrahim A. R., Samsuri S. A. M., Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2023, 296, 116645.

Reyes-Francis E., Echeverria-Arrondo C., Esparza D., Lopez-Luke T., Soto-Montero T., Morales-Masis M., Turren-Cruz S. H., Mora-Sero I., Julian-Lopez B., Chem Mater 2024, 36, 1728–1736 PubMed PMC

Lara-Cerón J. A., Vidyasagar C., Muñoz-Flores B. M., Pérez V. M. J. J. H. o. G. S. o. N., Compounds 2021, 543–584.

A. Morsali, L. Hashemi, Advances in Inorganic Chemistry, Elsevier 2020, 76, 33–72.

Lagunas-Chavarria A., Navarro-Rojero M. G., Salvador M. D., Benavente R., Catala-Civera J. M., Borrell A., Materials (Basel) 2022, 15, 3773. PubMed PMC

Solis E., Fernández-Saiz C., Rivas J. M., Esparza D., Turren-Cruz S.-H., Julián-López B., Boix P. P., Mora-Seró I., Electrochim Acta 2023, 439, 141701.

Liga S. M., Wang Y., Konstantatos G., Chem. Commun. (Camb) 2023, 59, 5567–5570. PubMed

S. Liga, S. R. Kavanagh, A. Walsh, D. O. Scanlon, G. Konstantatos, Mixed-Cation Vacancy-Ordered Perovskites (Cs2Ti1-xSnxX6; X=I, Br): High Miscibility, Additivity and Tunable Stability, ChemRxiv. 2023; doi: 10.26434/chemrxiv-2023-tqvh2-v2. DOI

Kong D. Y., Cheng D. L., Wang X. W., Zhang K. Y., Wang H. C., Liu K., Li H. L., Sheng X., Yin L., J. Mater. Chem. C 2020, 8, 1591–1597.

Euvrard J., Wang X., Li T., Yan Y., Mitzi D. B., J Mater Chem A 2020, 8, 4049–4054.

Mendes J. L., Gao W. R., Martin J. L., Carl A. D., Deskins N. A., Granados-Focil S., Grimm R. L., J. Phys. Chem. C 2020, 124, 24289–24297.

Grandhi G. K., Matuhina A., Liu M., Annurakshita S., Ali-Loytty H., Bautista G., Vivo P., Nanomaterials (Basel) 2021, 11, 1458. PubMed PMC

Walsh A., Sokol A. A., Buckeridge J., Scanlon D. O., Catlow C. R. A., Nat. Mater. 2018, 17, 958–964. PubMed

Pascual J., Nasti G., Aldamasy M. H., Smith J. A., Flatken M., Phung N., Di Girolamo D., Turren-Cruz S. H., Li M., Dallmann A., Avolio R., Abate A., Mater. Adv. 2020, 1, 1066–1070.

Meyer G., Gloger T., Beekhuizen J., Z. für Anorg. Allg. Chem. 2009, 635, 1497–1509.

Lodha R., Oprea G., Troczynski T., Ceram. Int. 2011, 37, 465–470.

Xiong Y., Tang C., Yao X., Zhang L., Li L., Wang X., Deng Y., Gao F., Dong L., Appl. Catal. A: Gen. 2015, 495, 206–216.

Chen Y.-C., Liou J.-M., Weng M.-Z., You H.-M., Chang K.-C., Ceram. Int. 2014, 40, 10337–10342.

Zhang F., Wang X., Gao W., Zhao J., Physical Review Applied 2022, 17, 064016.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...