Enhancing Stability of Microwave-Synthesized Cs2SnxTi1-xBr6 Perovskite by Cation Mixing
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CIPROM/2021/078
Conselleria d'Educació, Investigació, Cultura i Esport
2021/43/P/ST5/01780
Narodowe Centrum Nauki
945339
H2020 Marie Skłodowska-Curie Actions
PubMed
39655369
PubMed Central
PMC12051252
DOI
10.1002/cssc.202402073
Knihovny.cz E-zdroje
- Klíčová slova
- Cesium titanium tin bromide perovskite, Lead-free double perovskite, Microwave irradiation synthesis, Outdoor stability,
- Publikační typ
- časopisecké články MeSH
The double-perovskite material Cs2TiBr6 shows excellent photovoltaic potential, making it a promising alternative to lead-based materials. However, its high susceptibility to degradation in air has raised concerns about its practical application. This study introduces an interesting synthesis approach that significantly enhances the stability of Cs2TiBr6 powder. We implemented a gradual cation exchange process by substituting Ti4+ with Sn4+ in the efficient microwave-assisted synthesis method, developing a double perovskite Cs2SnxTi1-xBr6 type. A systematic study of increasing concentration of Sn4+ in Cs2TiBr6 perovskite has been performed to analyze the effect of Sn-doping degree on the chemical and thermal stability of the material and the optical features in both nitrogen and ambient atmospheres, significantly increasing the stability of the material in the air for over a week. Furthermore, introducing Sn4+ results in a more uniform polygonal crystal morphology of the powders and a slight band gap broadening. We show that microwave-assisted synthesis is highly efficient and cost-effective in producing more sustainable lead-free perovskite materials with enhanced stability and desirable electrical characteristics. This work suggests a promising method for synthesizing perovskite materials, opening new routes for scientific research and applications.
Zobrazit více v PubMed
Abate A., ACS Energy Lett. 2023, 8, 1896–1899. PubMed PMC
Kuan C. H., Balasaravanan R., Hsu S. M., Ni J. S., Tsai Y. T., Zhang Z. X., Chen M. C., Diau E. W., Adv. Mater. 2023, 35, e2300681. PubMed
Sun C., Yang P., Nan Z., Tian C., Cai Y., Chen J., Qi F., Tian H., Xie L., Meng L., Wei Z., Adv. Mater. 2023, 35, e2205603. PubMed
Ren M., Qian X., Chen Y., Wang T., Zhao Y., J. Hazard Mater. 2022, 426, 127848. PubMed
Schileo G., Grancini G., J. Mater. Chem. C 2021, 9, 67–76.
Chetyrkina M. R., Kameneva L., Mishchenko D. V., Klimanova E. N., Sashenkova T. E., Allayarova U. Y., Kostyuk S. V., Frolova L. A., Aldoshin S. M., Troshin P. A., Sol. Energy Mat. Sol. C 2023, 252, 112177.
Chen C. H., Cheng S. N., Cheng L., Wang Z. K., Liao L. S., Adv. Energy Mater. 2023, 13, 2204144.
Zuraw W., Vinocour Pacheco F. A., Sanchez-Diaz J., Przypis L., Mejia Escobar M. A., Almosni S., Vescio G., Martinez-Pastor J. P., Garrido B., Kudrawiec R., Mora-Sero I., Oz S., ACS Energy Lett. 2023, 8, 4885–4887. PubMed PMC
López-Fernández I., Wang C.-Y., Samanta S., Okamoto T., Huang Y.-T., Sun K., Liu Y., Chirvony V. S., Patra A., Zito J., De Trizio L., Gaur D., Sun H.-T., Xia Z., Li X., Zeng H., Mora-Seró I., Pradhan N., Martínez-Pastor J. P., Müller-Buschbaum P., Biju V., Debnath T., Saliba M., Debroye E., Hoye R. L. Z., Infante I., Manna L., Polavarapu L., Adv. Funct. Mater. 2023, 2307896.
Sekar K., Marasamy L., Mayarambakam S., Hawashin H., Nour M., Boucle J., RSC Adv. 2023, 13, 25483–25496. PubMed PMC
Chen X., Jia M. C., Xu W., Pan G. C., Zhu J. Y., Tian Y. T., Wu D., Li X. J., Shi Z. F., Adv. Opt. Mater. 2023, 11, 2202153.
Zhu Y., Hu X. R., Zheng G. Y., Wei X. P., He J., Wang J. L., Lin B. C., Yao D. S., Tian N., Mo S. Y., Long F., J. Electron. Mater. 2023, 52, 5554–5563.
Chen M., Ju M. G., Carl A. D., Zong Y. X., Grimm R. L., Gu J. J., Zeng X. C., Zhou Y. Y., Padture N. P., Joule 2018, 2, 558–570.
Liga M., Konstantatos G., Journal of Materials Chemistry C 2021, 9, 11098–11103. PubMed PMC
Ju M. G., Chen M., Zhou Y. Y., Garces H. F., Dai J., Ma L., Padture N. P., Zeng X. C., ACS Energy Lett. 2018, 3, 297–304.
Ayyaz A., Murtaza G., Usman A., Umer M., Shah M. Q., Ali H. S., Mat Sci Semicon Proc 2024, 169, 107910.
Shi M., Fu P., Tian W., Chi H., Li C., Li R., Small Methods 2024, 8, e2300405. PubMed
Mi X., Pan J., Zhang Y. R., Liu Y. X., Mu G., Yang P. Z., Qin P., Huang F. Q., Mat. Sci. Semicon. Proc. 2023, 165, 107652.
He J. Z., Hu X. D., Liu Z. H., Chen W., Longo G., Adv. Funct. Mater. 2023, 33, 2306075.
Levy S., Khalfin S., Pavlopoulos N. G., Kauffmann Y., Atiya G., Shaek S., Dror S., Shechter R., Bekenstein Y., Chem. Mater. 2021, 33, 2370–2377. PubMed PMC
Mercy P. A. M., Wilson K. S. J., Appl. Surf. Sci. Adv. 2023, 15, 100394.
Zhou J., Wu D., Tian C., Liang Z., Ran H., Gao B., Luo Z., Huang Q., Tang X., Small 2023, 19, e2207915. PubMed
Aslam S., Bakhsh S., Yusof Y., Rahman M. Y. A., Ibrahim A. R., Samsuri S. A. M., Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2023, 296, 116645.
Reyes-Francis E., Echeverria-Arrondo C., Esparza D., Lopez-Luke T., Soto-Montero T., Morales-Masis M., Turren-Cruz S. H., Mora-Sero I., Julian-Lopez B., Chem Mater 2024, 36, 1728–1736 PubMed PMC
Lara-Cerón J. A., Vidyasagar C., Muñoz-Flores B. M., Pérez V. M. J. J. H. o. G. S. o. N., Compounds 2021, 543–584.
A. Morsali, L. Hashemi, Advances in Inorganic Chemistry, Elsevier 2020, 76, 33–72.
Lagunas-Chavarria A., Navarro-Rojero M. G., Salvador M. D., Benavente R., Catala-Civera J. M., Borrell A., Materials (Basel) 2022, 15, 3773. PubMed PMC
Solis E., Fernández-Saiz C., Rivas J. M., Esparza D., Turren-Cruz S.-H., Julián-López B., Boix P. P., Mora-Seró I., Electrochim Acta 2023, 439, 141701.
Liga S. M., Wang Y., Konstantatos G., Chem. Commun. (Camb) 2023, 59, 5567–5570. PubMed
S. Liga, S. R. Kavanagh, A. Walsh, D. O. Scanlon, G. Konstantatos, Mixed-Cation Vacancy-Ordered Perovskites (Cs2Ti1-xSnxX6; X=I, Br): High Miscibility, Additivity and Tunable Stability, ChemRxiv. 2023; doi: 10.26434/chemrxiv-2023-tqvh2-v2. DOI
Kong D. Y., Cheng D. L., Wang X. W., Zhang K. Y., Wang H. C., Liu K., Li H. L., Sheng X., Yin L., J. Mater. Chem. C 2020, 8, 1591–1597.
Euvrard J., Wang X., Li T., Yan Y., Mitzi D. B., J Mater Chem A 2020, 8, 4049–4054.
Mendes J. L., Gao W. R., Martin J. L., Carl A. D., Deskins N. A., Granados-Focil S., Grimm R. L., J. Phys. Chem. C 2020, 124, 24289–24297.
Grandhi G. K., Matuhina A., Liu M., Annurakshita S., Ali-Loytty H., Bautista G., Vivo P., Nanomaterials (Basel) 2021, 11, 1458. PubMed PMC
Walsh A., Sokol A. A., Buckeridge J., Scanlon D. O., Catlow C. R. A., Nat. Mater. 2018, 17, 958–964. PubMed
Pascual J., Nasti G., Aldamasy M. H., Smith J. A., Flatken M., Phung N., Di Girolamo D., Turren-Cruz S. H., Li M., Dallmann A., Avolio R., Abate A., Mater. Adv. 2020, 1, 1066–1070.
Meyer G., Gloger T., Beekhuizen J., Z. für Anorg. Allg. Chem. 2009, 635, 1497–1509.
Lodha R., Oprea G., Troczynski T., Ceram. Int. 2011, 37, 465–470.
Xiong Y., Tang C., Yao X., Zhang L., Li L., Wang X., Deng Y., Gao F., Dong L., Appl. Catal. A: Gen. 2015, 495, 206–216.
Chen Y.-C., Liou J.-M., Weng M.-Z., You H.-M., Chang K.-C., Ceram. Int. 2014, 40, 10337–10342.
Zhang F., Wang X., Gao W., Zhao J., Physical Review Applied 2022, 17, 064016.