Comparison of Pressurized Water Extraction With Ultrasound Assisted Extraction for Isolation of Phycobiliproteins From Arthrospira platensis (Spirulina)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
RVO:68081715
Akademie Věd České Republiky
23-04703S
Grantová Agentura České Republiky
PubMed
39658965
PubMed Central
PMC11876717
DOI
10.1002/pca.3486
Knihovny.cz E-zdroje
- Klíčová slova
- Arthrospira platensis, phycocyanin, pressurized water extraction, spirulina, ultrasound assisted extraction,
- MeSH
- chemická frakcionace * metody MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fykobiliproteiny * izolace a purifikace chemie MeSH
- Spirulina * chemie MeSH
- teplota MeSH
- tlak MeSH
- ultrazvuk * metody MeSH
- ultrazvukové vlny MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- fykobiliproteiny * MeSH
- voda * MeSH
INTRODUCTION: Cyanobacterium Arthrospira platensis (AP) (Nordstedt) Gomont contains high content of phycobiliproteins (PBP), which are an important source for food industry. Methods effectively extracting proteins contained in AP cells are demanded to provide a supply of the material. Water-based extraction methods are advisable due to the high solubility of the PBP. OBJECTIVES: Extraction techniques such as ultrasound assisted extraction (UAE) and pressurized water extraction (PWE) are popular due to their environmental friendliness, better extraction efficiency, and faster extraction process. In this paper, efficiency of the two methods is compared. MATERIALS AND METHODS: PWE along with UAE is utilized for release of PBP from the AP cells. The extraction parameters including time, temperature, pressure, and ultrasound intensity are tested to obtain the most efficient setup. The methods were evaluated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the replicates of PWE extracts were further analyzed by capillary isoelectric focusing with laser-induced fluorescence (cIEF-LIF). RESULTS: The developed PWE method using higher pressure treatment at lower temperature was significantly faster than UAE methods, and the SDS-PAGE results showed a high content of phycobiliproteins in the extracts. cIEF-LIF analysis showed that the sequential PWE of individual samples was repeatable, and the mild extraction provided a fluorescent profile similar to the commercially available C-phycocyanin standard. CONCLUSION: Pressurized water extraction was shown to be an efficient, rapid, and well-automated extraction method for AP proteins in general, including bioactive phycobiliproteins. Obtained results encourage the use of PWE in small-scale analytical applications for primary extraction of proteins.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Fabre J. F., Niangoran N. U. F., Gaignard C., Buso D., Mouloungui Z., and Valentin R., “Extraction, Purification and Stability of C‐Phycocyanin From Arthrospira platensis ,” European Food Research and Technology 248, no. 6 (2022): 1583–1599, 10.1007/s00217-022-03987-z. DOI
Ravi M., Tentu S., Baskar G., et al., “Molecular Mechanism of Anti‐Cancer Activity of Phycocyanin in Triple‐Negative Breast Cancer Cells,” BMC Cancer 15 (2015): 768, 10.1186/s12885-015-1784-x. PubMed DOI PMC
Chen H. W., Yang T. S., Chen M. J., et al., “Purification and Immunomodulating Activity of C‐Phycocyanin From Spirulina Platensis Cultured Using Power Plant Flue gas,” Process Biochemistry 49, no. 8 (2014): 1337–1344, 10.1016/j.procbio.2014.05.006. DOI
Maddiboyina B., Vanamamalai H. K., Roy H., et al., “Food and Drug Industry Applications of Microalgae Spirulina platensis: A Review,” Journal of Basic Microbiology 63, no. 6 (2023): 573–583, 10.1002/jobm.202200704. PubMed DOI
Chaiklahan R., Chirasuwan N., and Bunnag B., “Stability of Phycocyanin Extracted From Spirulina sp.: Influence of Temperature, pH and Preservatives,” Process Biochemistry 47, no. 4 (2012): 659–664, 10.1016/j.procbio.2012.01.010. DOI
Ashaolu T. J., Samborska K., Lee C. C., et al., “Phycocyanin, a Super Functional Ingredient From Algae; Properties, Purification Characterization, and Applications,” International Journal of Biological Macromolecules 193 (2021): 2320–2331, 10.1016/j.ijbiomac.2021.11.064. PubMed DOI
Sonani R. R., Rastogi R. P., Patel R., and Madamwa D., “Recent Advances in Production, Purification and Applications of Phycobiliproteins,” World Journal of Biological Chemistry 7, no. 1 (2016): 100–109, 10.4331/wjbc.v7.i1.100. PubMed DOI PMC
Lafarga T., Fernández‐Sevilla J. M., González‐López C., and Acién‐Fernández F. G., “Spirulina for the Food and Functional Food Industries,” Food Research International 137 (2020): 109356, 10.1016/j.foodres.2020.109356. PubMed DOI
Liu Q., Huang Y., Zhang R., Cai T., and Cai Y., “Medical Application of Spirulina platensis Derived C‐Phycocyanin,” Evidence‐based Complementary and Alternative Medicine 2016 (2016): 1–14, 10.1155/2016/7803846. PubMed DOI PMC
Aráoz R., Lebert M., and Häder D. P., “Electrophoretic Applications of Phycobiliproteins,” Electrophoresis 19, no. 2 (1998): 215–219, 10.1002/elps.1150190213. PubMed DOI
Zheng Y., Mo L., Zhang W., et al., “Phycocyanin Fluorescent Probe From Arthrospira platensis: Preparation and Application in LED‐CCD Fluorescence Density Strip Qualitative Detection System,” Journal of Applied Phycology 31 (2019): 1107–1115, 10.1007/s10811-018-1631-y. DOI
Singh P., Kuddus M., and Thomas G., “Isolation and Binding Affinity of C‐Phycocyanin to Blood Cells and Genomic DNA as Well as Its Diagnostic Applications,” Journal of Biotechnology and Pharmaceutical Research 2, no. 1 (2011): 1–8.
He J. A., Hu Y. Z., and Jiang L. J., “Photodynamic Action of Phycobiliproteins: In Situ Generation of Reactive Oxygen Species,” Biochimica et Biophysica Acta (BBA)‐Bioenergetics 1320, no. 2 (1997): 165–174, 10.1016/S0005-2728(97)00021-2. DOI
Bharathiraja S., Seo H., Manivasagan P., Moorthy M. S., Park S., and Oh J., “In Vitro Photodynamic Effect of Phycocyanin Against Breast Cancer Cells,” Molecules 21, no. 11 (2016): 1–12, 10.3390/molecules21111470. PubMed DOI PMC
Lauceri R., Zittelli G. C., and Torzillo G., “A Simple Method for Rapid Purification of Phycobiliproteins From Arthrospira platensis and Porphyridium cruentum Biomass,” Algal Research 44 (2019): 101685, 10.1016/j.algal.2019.101685. DOI
Telegina T. A., Biryukov M. V., Terekhova I. V., Vechtomova Y. L., and Kritsky M. S., “Isolation and Characterization of Water‐Soluble Chromoproteins From Arthrospira platensis Cyanobacteria: C‐Phycocyanin, Allophycocyanin, and Carotenoid‐ and Chlorophyll‐Binding Proteins,” Applied Biochemistry and Microbiology 54, no. 6 (2018): 631–638, 10.1134/S0003683818060145. DOI
Kamble S. P., Gaikar R. B., Padalia R. B., and Shinde K. D., “Extraction and Purification of C‐Phycocyanin From dry Spirulina Powder and Evaluating Its Antioxidant, Anticoagulation and Prevention of DNA Damage Activity,” Journal of Applied Pharmaceutical Science 3, no. 8 (2013): 149–153, 10.7324/JAPS.2013.3826. DOI
Jaeschke D. P., Teixeira I. R., Marczak L. D. F., and Mercali G. D., “Phycocyanin From Spirulina: A Review of Extraction Methods and Stability,” Food Research International 143 (2021): 110314, 10.1016/j.foodres.2021.110314. PubMed DOI
Kovaleski G., Kholany M., Dias L. M. S., et al., “Extraction and Purification of Phycobiliproteins From Algae and Their Applications,” Frontiers in Chemistry 10 (2022): 1065355, 10.3389/fchem.2022.1065355. PubMed DOI PMC
Ruiz‐Domínguez M. C., Jáuregui M., Medina E., Jaime C., and Cereza P., “Rapid Green Extractions of C‐Phycocyanin From Arthrospira maxima for Functional Applications,” Applied Sciences 9, no. 10 (2019): 1–13, 10.3390/app9101987. DOI
Pan‐utai W., Iamtham S., Boonbumrung S., and Mookdasanit J., “Improvement in the Sequential Extraction of Phycobiliproteins From Arthrospira platensis Using Green Technologies,” Life 12, no. 11 (2022): 1896, 10.3390/life12111896. PubMed DOI PMC
Tavanandi H. A., Devi A. C., and Raghavarao K., “A Newer Approach for the Primary Extraction of Allophycocyanin With High Purity and Yield From dry Biomass of Arthrospira platensis ,” Separation and Purification Technology 204 (2018): 162–174, 10.1016/j.seppur.2018.04.057. DOI
Tavanandi H. A., Mittal R., Chandrasekhar J., and Raghavarao K. S. M. S., “Simple and Efficient Method for Extraction of C‐Phycocyanin From dry Biomass of Arthospira platensis ,” Algal Research 31 (2018): 239–251, 10.1016/j.algal.2018.02.008. DOI
Vernès L., Abert‐Vian M., El Maâtaoui M., Tao Y., Bornard I., and Chemat F., “Application of Ultrasound for Green Extraction of Proteins From Spirulina. Mechanism, Optimization, Modeling, and Industrial Prospects,” Ultrasonics Sonochemistry 54 (2019): 48–60, 10.1016/j.ultsonch.2019.02.016. PubMed DOI
Rodriguez R. D. P., de Castro F. C., de Santiago‐Aguiar R. S., and Rocha M. V. P., “Ultrasound‐Assisted Extraction of Phycobiliproteins From Spirulina (Arthrospira) platensis Using Protic Ionic Liquids as Solvent,” Algal Research 31 (2018): 454–462, 10.1016/j.algal.2018.02.021. DOI
Nikolova K., Petkova N., Mihaylova D., et al., “Extraction of Phycocyanin and Chlorophyll From Spirulina by “Green Methods”,” Separations. 11, no. 2 (2024): 57, 10.3390/separations11020057. DOI
Safi C., Ursu A. V., Laroche C., et al., “Aqueous Extraction of Proteins From Microalgae: Effect of Different Cell Disruption Methods,” Algal Research 3 (2014): 61–65, 10.1016/j.algal.2013.12.004. DOI
Seo Y. C., Choi W. S., Park J. H., Park J. O., Jung K. H., and Lee H. Y., “Stable Isolation of Phycocyanin From Spirulina Platensis Associated With High‐Pressure Extraction Process,” International Journal of Molecular Sciences 14 (2013): 1778–1787, 10.3390/ijms14011778. PubMed DOI PMC
Zhou J. J., Wang M., Carrillo C., et al., “Impact of Pressurized Liquid Extraction and pH on Protein Yield, Changes in Molecular Size Distribution and Antioxidant Compounds Recovery From Spirulina,” Food 10, no. 9 (2021): 2153, 10.3390/foods10092153. PubMed DOI PMC
Dadajová P., Čmelík R., Šlais K., and Duša F., “Fluorescein‐Based low‐Molecular‐Mass Markers of Isoelectric Point for Tracing pH Gradient Using High Sensitivity Capillary Isoelectric Focusing With Laser‐Induced Fluorescence Detection,” Analytica Chimica Acta 1331 (2024): 343331, 10.1016/j.aca.2024.343331. PubMed DOI
Karásek P., Planeta J., and Roth M., “Solubility of Solid Polycyclic Aromatic Hydrocarbons in Pressurized Hot Water at Temperatures From 313 K to the Melting Point,” Journal of Chemical & Engineering Data 51, no. 2 (2006): 616–622, 10.1021/je050427r. DOI
Cruzado‐Park I. D., Mack S., and Ratnayake C. K., “A Robust cIEF Method: Intermediate Precision for the pH 5–7 Range,” accessed May 31, 2024, https://sciex.com/content/dam/SCIEX/pdf/tech‐notes/all/Robust‐cIEF‐Method.pdf.
Ferraro G., Imbimbo P., Marseglia A., et al., “A Thermophilic C‐Phycocyanin With Unprecedented Biophysical and Biochemical Properties,” International Journal of Biological Macromolecules 150 (2020): 38–51, 10.1016/j.ijbiomac.2020.02.045. PubMed DOI
Velickovic L., Simovic A., Gligorijevic N., et al., “Exploring and Strengthening the Potential of R‐Phycocyanin From Nori Flakes as a Food Colourant,” Food Chemistry 426 (2023): 136669, 10.1016/j.foodchem.2023.136669. PubMed DOI
Carlos T. A. V., Cavalcante K. M. D. P., de Oliveira F. D. E., et al., “Pressurized Extraction of Phycobiliproteins From Arthrospira platensis and Evaluation of Its Effect on Antioxidant and Anticancer Activities of These Biomolecules,” Journal of Applied Phycology 33, no. 2 (2021): 929–938, 10.1007/s10811-020-02358-z. DOI
Plaza M. and Turner C., “Pressurized Hot Water Extraction of Bioactives,” TrAC Trends in Analytical Chemistry 71 (2015): 39–54, 10.1016/j.trac.2015.02.022. DOI
Herrero M., Simó C., Ibáñez E., and Cifuentes A., “Capillary Electrophoresis‐Mass Spectrometry of Spirulina platensis Proteins Obtained by Pressurized Liquid Extraction,” Electrophoresis 26, no. 21 (2005): 4215–4224, 10.1002/elps.200500230. PubMed DOI
Kulkarni V. M. and Rathod V. K., “Mapping of an Ultrasonic Bath for Ultrasound Assisted Extraction of Mangiferin From Mangifera indica Leaves,” Ultrasonics Sonochemistry 21, no. 2 (2014): 606–611, 10.1016/j.ultsonch.2013.08.021. PubMed DOI
Singh N. K., Sonani R. R., Rastogi R. P., and Madamwar D., “The Phycobilisomes: An Early Requisite for Efficient Photosynthesis in Cyanobacteria,” EXCLI Journal 14 (2015): 268–289, 10.17179/excli2014-723. PubMed DOI PMC
Mishra S. K., Shrivastav A., and Mishra S., “Effect of Preservatives for Food Grade C‐PC From Spirulina platensis ,” Process Biochemistry 43, no. 4 (2008): 339–345, 10.1016/j.procbio.2007.12.012. DOI
Buecker S., Grossmann L., Loeffler M., Leeb E., and Weiss J., “Thermal and Acidic Denaturation of Phycocyanin From Arthrospira platensis: Effects of Complexation With λ‐Carrageenan on Blue Color Stability,” Food Chemistry 380 (2022): 132157, 10.1016/j.foodchem.2022.132157. PubMed DOI